CGP-48506 increases contractility of ventricular myocytes and myofilaments by effects on actin-myosin reaction. 1996

B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago 60612-7342, USA.

We measured the effects of the benzodiazocine derivative, CGP-48506 (5-methyl-6-phenyl-1,3,5,6-tetrahydro-3,6-methano-1, 5-benzodiazocine-2,4-dione), on contraction of intact myocytes and permeabilized fibers of rat ventricular muscle. CGP-48506 is unique in that it is able to sensitize cardiac myofilaments to Ca2+, but unlike all other agents in this class, it is not an inhibitor of type III phosphodiesterase. When added to isolated intact myocytes, CGP-48506 significantly increased the amplitude of cell shortening with little or no change in the Ca2+ transient, as determined by the fluorescence ratio of fura 2. The late phase of the relation between fura 2 ratio and cell length was shifted to the left in the presence of CGP-48506. CGP-48506 also induced a relatively small decrease in diastolic length. However, compared with the thiadiazinone EMD-57033, CGP-48506 had a much smaller effect on diastolic length at concentrations in which there was a bigger inotropic effect. When added to solutions bathing detergent-extracted (skinned) fiber bundles, CGP-48506 increased maximum force. CGP-48506 also increased submaximal force and shifted the pGa-force relation to the left. However, compared with EMD-57033, there was less of an effect of CGP-48506 on force at relatively high pCa values. CGP-48506 did not alter Ca2+ binding to myofilament troponin C. CGP-48506 was able to reverse inhibition of contraction induced by butanedione monoxime both in intact cells and in skinned fiber bundles. Our results indicate that CGP-48506, like EMD-57033, is a positive inotropic agent working through a direct effect downstream from troponin C. CGP-48506, however, appears to have a unique mechanism resulting in less effect on diastolic function.

UI MeSH Term Description Entries
D008297 Male Males
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011804 Quinolines
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002316 Cardiotonic Agents Agents that have a strengthening effect on the heart or that can increase cardiac output. They may be CARDIAC GLYCOSIDES; SYMPATHOMIMETICS; or other drugs. They are used after MYOCARDIAL INFARCT; CARDIAC SURGICAL PROCEDURES; in SHOCK; or in congestive heart failure (HEART FAILURE). Cardiac Stimulant,Cardiac Stimulants,Cardioprotective Agent,Cardioprotective Agents,Cardiotonic,Cardiotonic Agent,Cardiotonic Drug,Inotropic Agents, Positive Cardiac,Myocardial Stimulant,Myocardial Stimulants,Cardiotonic Drugs,Cardiotonics,Agent, Cardioprotective,Agent, Cardiotonic,Drug, Cardiotonic,Stimulant, Cardiac,Stimulant, Myocardial
D003931 Diacetyl Carrier of aroma of butter, vinegar, coffee, and other foods. 2,3-Butanedione,Biacetyl,Diketobutane,Dimethyldiketone,Dimethylglyoxal,2,3 Butanedione

Related Publications

B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
May 2008, Frontiers in bioscience : a journal and virtual library,
B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
April 2002, Zeitschrift fur Kardiologie,
B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
November 1988, The American journal of physiology,
B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
January 2015, Cardiovascular drugs and therapy,
B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
June 1996, The Journal of pharmacology and experimental therapeutics,
B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
June 1996, The Journal of pharmacology and experimental therapeutics,
B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
September 1988, Arzneimittel-Forschung,
B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
January 1996, European journal of pharmacology,
B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
November 2008, American journal of physiology. Heart and circulatory physiology,
B M Wolska, and Y Kitada, and K A Palmiter, and M V Westfall, and M D Johnson, and R J Solaro
December 1992, Molecular and cellular biochemistry,
Copied contents to your clipboard!