Regeneration and revascularization of a nerve-intact skeletal muscle graft in the spontaneously hypertensive rat. 1996

R C Carlsen, and D Kerlin, and S D Gray
Department of Human Physiology, School of Medicine, University of California, Davis 95616, USA.

Skeletal muscles in hypertensive subjects develop an increased resistance to insulin that reduces their ability to incorporate glucose and synthesize glycogen. Insulin is an anabolic hormone in muscle, and muscle insulin receptors bind the growth factor, insulin-like growth factor I (IGF-I), an important contributor to muscle development and regeneration. An increase in insulin resistance in hypertensive subjects might produce muscle atrophy and weakness or limit regenerative growth after injury. Regenerative muscle growth was assessed in 24-to 26-wk-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats by subjecting extensor digitorum longus (EDL), an ankle flexor, to a nerve-intact graft procedure. The procedure produces extensive muscle fiber and capillary degeneration, but has little effect on the muscle nerve. Muscle morphology and contractile function were examined in intact and regenerating EDL at 21, 42, and 63 days postgraft. Muscle revascularization was assessed histologically at the same time points. Severe established hypertension did not prevent the reestablishment of a structurally normal capillary network in injured muscles. SHR muscle fiber regeneration and maturation, however, were significantly depressed compared with WKY grafts. The reduced regenerative recovery of SHR EDL in adult animals with severe hypertension does not appear to be due to a failure to restore the muscle nerve or capillary network, but may reflect a reduced anabolic response to insulin or IGF-I.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014034 Toes Any one of five terminal digits of the vertebrate FOOT. Toe
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

R C Carlsen, and D Kerlin, and S D Gray
December 1976, Life sciences,
R C Carlsen, and D Kerlin, and S D Gray
January 1984, The American journal of physiology,
R C Carlsen, and D Kerlin, and S D Gray
November 2003, The Journal of biological chemistry,
R C Carlsen, and D Kerlin, and S D Gray
March 1996, Acta physiologica Scandinavica,
R C Carlsen, and D Kerlin, and S D Gray
February 1987, Hypertension (Dallas, Tex. : 1979),
R C Carlsen, and D Kerlin, and S D Gray
March 2008, Investigacion clinica,
R C Carlsen, and D Kerlin, and S D Gray
August 2002, Neuroreport,
R C Carlsen, and D Kerlin, and S D Gray
January 1988, Monographs in developmental biology,
R C Carlsen, and D Kerlin, and S D Gray
March 2011, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!