Activation and desensitisation of acetylcholine release by zinc at Torpedo nerve terminals. 1996

Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
Département de pharmacologie, CMU, CH-1211 Geneva 4, Switzerland.

Treatment with 100 or 250 microM ZnCl2 irreversibly blocked neurotransmission in the Torpedo electric organ by inhibiting acetylcholine (ACh) release. In Zn2+-treated tissue, release failure did not result from impairment of Ca2+ entry since stimulation still provoked an accumulation of Ca2+. Also pretreatment of isolated synaptosomes with Zn2+ inhibited to the same extent the release elicited by KCl-evoked depolarisation and the release elicited by using the Ca2+ ionophore A23187. On the other hand, after application of A23187, Zn2+ by itself efficiently triggered ACh release from synaptosomes. This dual effect of Zn2+ was also observed to occur in proteoliposomes equipped with mediatophore (a protein of the presynaptic membrane characterised by its capability to support Ca2+-dependent transmitter release). Hence, Zn2+ mimicked two fundamental actions of Ca2+ on nerve terminals, which are: (1) the immediate activation of release, and (2) a more slowly developing desensitisation of release. Zn2+ was more powerful than Ca2+ for both actions. It is concluded that the dual action of Zn2+ on the mediatophore protein accounts at least in part for its complex effects on neurotransmission.

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005260 Female Females
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
September 1996, Pflugers Archiv : European journal of physiology,
Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
September 1984, Journal of neurochemistry,
Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
May 1992, The Journal of physiology,
Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
April 1997, The European journal of neuroscience,
Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
January 1985, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
October 1986, The Journal of physiology,
Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
October 1986, The Journal of physiology,
Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
October 1978, Pflugers Archiv : European journal of physiology,
Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
December 1965, The Journal of physiology,
Y Dunant, and F Loctin, and J P Vallée, and A Parducz, and B Lesbats, and M Israël
June 1990, British journal of pharmacology,
Copied contents to your clipboard!