Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. 1996

A Minajeva, and R Ventura-Clapier, and V Veksler
Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Faculté de Pharmacie Université Paris-Sud, 5 rue Jean-Baptiste Clément, F-92296, Châtenay-Malabry, Cedex, France.

The role of creatine kinase (CK) bound to sarcoplasmic reticulum (SR), in the energy supply of SR ATPase in situ, was studied in saponin-permeabilised rat ventricular fibres by loading SR at pCa 6. 5 for different times and under different energy supply conditions. Release of Ca2+ was induced by 5 mM caffeine and the peak of relative tension (T/Tmax) and the area under isometric tension curves, ST, were measured. Taking advantage of close localisation of myofibrils and SR, free [Ca2+] in the fibres during the release was estimated using steady state [Ca2+]/tension relationship. Peak [Ca2+] and integral of free Ca2+ transients (S[Ca2+]f) were then calculated. At all times, loading with 0.25 mM adenosine diphosphate, Mg2+ salt (MgADP) and 12 mM phosphocreatine (PCr) [when adenosine triphosphate (ATP) was generated via bound CK] was as efficient as loading with both 3.16 mM MgATP and 12 mM PCr (control conditions). However, when loading was supported by MgATP alone (3.16 mM), T/Tmax was only 40% and S[Ca2+]f 31% of control (P < 0.001). Under these conditions, addition of a soluble ATP-regenerating system (pyruvate kinase and phosphoenolpyruvate), did not increase loading substantially. Both ST and S[Ca2+]f were more sensitive to the loading conditions than T/Tmax and peak [Ca2+]. The data suggest that Ca2+ uptake by the SR in situ depends on local ATP/ADP ratio which is effectively controlled by bound CK.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

A Minajeva, and R Ventura-Clapier, and V Veksler
May 1993, European journal of biochemistry,
A Minajeva, and R Ventura-Clapier, and V Veksler
February 2006, The Journal of pharmacology and experimental therapeutics,
A Minajeva, and R Ventura-Clapier, and V Veksler
August 2000, Pflugers Archiv : European journal of physiology,
A Minajeva, and R Ventura-Clapier, and V Veksler
April 1989, Archives of biochemistry and biophysics,
A Minajeva, and R Ventura-Clapier, and V Veksler
January 1988, Molecular and cellular biochemistry,
A Minajeva, and R Ventura-Clapier, and V Veksler
January 1984, Current topics in cellular regulation,
A Minajeva, and R Ventura-Clapier, and V Veksler
December 1987, Biochemistry,
A Minajeva, and R Ventura-Clapier, and V Veksler
April 1988, Anesthesia and analgesia,
A Minajeva, and R Ventura-Clapier, and V Veksler
January 1997, Biochimica et biophysica acta,
Copied contents to your clipboard!