Calcium sparks and [Ca2+]i waves in cardiac myocytes. 1996

H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
Department of Physiology, University of Maryland, Baltimore School of Medicine 21201, USA.

Local elevations in intracellular calcium ("Ca2+ sparks") in heart muscle are elementary sarcoplasmic reticulum (SR) Ca(2+)-release events. Ca2+ sparks occur at a low rate in quiescent cells but can also be evoked by electrical stimulation of the cell to produce the cell-wide Ca2+ transient. In this study we investigate how Ca2+ sparks are related to propagating waves of elevated cytosolic Ca2+ induced by "Ca2+ overload." Single ventricular myocytes from rat were loaded with the Ca(2+)-sensitive indicator fluo 3 and imaged with a confocal microscope. After extracellular Ca2+ concentration was increased from 1 to 10 mM to produce Ca2+ overload, the frequency of spontaneous Ca2+ sparks, which occur at the t tubule/SR junction, increased approximately 4-fold, whereas the spark amplitude and spatial size increased 4.1-and 1.7-fold, respectively. In addition, a spectrum of larger subcellular events, including propagating Ca2+ waves, was observed. Ca2+ sparks were seen to occur at the majority (65%) of the sites of wave initiation. For slowly propagating Ca2+ waves, discrete Ca(2+)-release events, similar to Ca2+ sparks, were detected in the wave front. These Ca2+ sparks appeared to recruit other sparks along the wave front so that the wave progressed in a saltatory manner. We conclude that Ca2+ sparks are elementary events that can explain both the initiation and propagation of Ca2+ waves. In addition, we show that Ca2+ waves and electrically evoked Ca2+ transients have the same time course and interact with each other in a manner that is consistent with both phenomena having the same underlying mechanism(s). These results suggest that SR Ca2+ release during Ca2+ waves, like that during normal excitation-contraction coupling, results from the spatial and temporal summation of Ca2+ sparks.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
December 1999, The Journal of physiology,
H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
January 2011, Methods in molecular biology (Clifton, N.J.),
H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
February 2007, Circulation research,
H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
June 2007, Biophysical journal,
H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
January 2001, Biophysical journal,
H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
October 2007, The Journal of physiology,
H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
February 2018, Royal Society open science,
H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
January 2004, Biophysical journal,
H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
January 2013, PloS one,
H Cheng, and M R Lederer, and W J Lederer, and M B Cannell
April 2012, Biophysical journal,
Copied contents to your clipboard!