Comparison of the ocular beta-blockers. 1996

S J Sorensen, and S R Abel
Pharmacy Department, UH 1410. Indiana University Medical Center, Indianapolis, IN 46202, USA.

OBJECTIVE To compare the similarities and differences among the ocular beta-blockers. Important considerations when comparing these agents are the differences in systemic adverse effects, local tolerability, and cost. METHODS Information was retrieved from a MEDLINE search of the English-language literature and bibliographic reviews of review articles. Index terms included beta-blockers, glaucoma, timolol, levobunolol, betaxolol, metipranolol, and carteolol. METHODS Emphasis was placed on eyedrop studies, as well as properly designed and executed clinical trials that assessed dosage, dosing interval, therapeutic response, adverse effects, and cost. METHODS Data from several studies were evaluated according to the study design, therapeutic response, and adverse effects. RESULTS Timolol maleate, levobunolol, metipranolol, and carteolol have similar effectiveness in lowering intraocular pressure; however, levobunolol and timolol gel forming solution may have an advantage of once-daily dosing. Studies have not been published comparing the clinical efficacy of timolol hemihydrate with that of other ocular beta-blockers. Metipranolol is cost effective in treating primary open-angle glaucoma; however, it has been associated with more ocular burning, stinging, and granulomatous anterior uveitis than other agents. The intrinsic sympathomimetic activity of carteolol has not yet displayed a definite advantage over the other agents in terms of optic disk perfusion and systemic adverse effects. The control of intraocular pressure with betaxolol has not always been as good as with timolol; however, betaxolol has some advantages over timolol and the other topical beta-blockers in terms of systemic adverse effects. CONCLUSIONS Considering cost, efficacy, and safety, timolol maleate is the recommended formulary agent because the other agents cannot consistently show an outstanding advantage.

UI MeSH Term Description Entries
D007429 Intraocular Pressure The pressure of the fluids in the eye. Ocular Tension,Intraocular Pressures,Ocular Tensions,Pressure, Intraocular,Pressures, Intraocular,Tension, Ocular,Tensions, Ocular
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005901 Glaucoma An ocular disease, occurring in many forms, having as its primary characteristics an unstable or a sustained increase in the intraocular pressure which the eye cannot withstand without damage to its structure or impairment of its function. The consequences of the increased pressure may be manifested in a variety of symptoms, depending upon type and severity, such as excavation of the optic disk, hardness of the eyeball, corneal anesthesia, reduced visual acuity, seeing of colored halos around lights, disturbed dark adaptation, visual field defects, and headaches. (Dictionary of Visual Science, 4th ed) Glaucomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S J Sorensen, and S R Abel
May 2005, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan,
S J Sorensen, and S R Abel
November 1984, American journal of ophthalmology,
S J Sorensen, and S R Abel
June 1975, British medical journal,
S J Sorensen, and S R Abel
June 1975, British medical journal,
S J Sorensen, and S R Abel
June 1986, Archives of internal medicine,
S J Sorensen, and S R Abel
June 1997, Journal of glaucoma,
S J Sorensen, and S R Abel
March 1998, Clinical and experimental dermatology,
S J Sorensen, and S R Abel
January 1992, Drugs & aging,
S J Sorensen, and S R Abel
December 1985, The American journal of cardiology,
S J Sorensen, and S R Abel
September 1994, Journal of pharmaceutical sciences,
Copied contents to your clipboard!