L-DOPA induces concentration-dependent facilitation and inhibition of presynaptic acetylcholine release in the guinea-pig submucous plexus. 1996

K Hirai, and Y Katayama, and Y Misu
Department of Autonomic Physiology, Tokyo Medical and Dental University, Japan. keijihirai.auto@und.ac.jp

Neurotransmitter- or neuromodulator-like actions of L-DOPA were investigated with intracellular recordings from submucous plexus neurons of the guinea-pig caecum. L-DOPA at 30 nM augmented the amplitude of fast EPSPs, but did not affect depolarizations elicited by puff application of acetylcholine (ACh). The augmenting effect of L-DOPA on the fast EPSPs was counteracted by L-DOPA methyl ester. The fast EPSPs were depressed by 10 microM L-DOPA, but transiently augmented after rinsing the drug. L-DOPA methyl ester did not affect the inhibitory action of L-DOPA on the fast EPSPs, but antagonized the potentiation following the inhibition. The depolarization elicited by exogenously applied ACh was inhibited by 10 microM L-DOPA. Intracellular Ca2+ concentrations ([Ca2+]i) of the neuronal soma were measured with fura-2 microfluorophotometry. The transient increase in the [Ca2+]i evoked by the somatic action potential (delta[Ca2+]AP) was facilitated by 30 nM L-DOPA, but decreased by the drug at 10 microM. It is concluded that L-DOPA at low concentrations enhances the delta[Ca2+]AP, increasing the neurotransmitter release, but at high dose diminishes the delta[Ca2+]AP, inhibiting the neurotransmission.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D008297 Male Males
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002432 Cecum The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX. Cecums

Related Publications

K Hirai, and Y Katayama, and Y Misu
April 1998, Neurogastroenterology and motility,
K Hirai, and Y Katayama, and Y Misu
September 2000, American journal of physiology. Gastrointestinal and liver physiology,
K Hirai, and Y Katayama, and Y Misu
August 1997, British journal of pharmacology,
K Hirai, and Y Katayama, and Y Misu
April 1986, The Journal of pharmacy and pharmacology,
Copied contents to your clipboard!