Damage to dopaminergic nerve terminals in mice by combined treatment of intrastriatal malonate with systemic methamphetamine or MPTP. 1996

D S Albers, and G D Zeevalk, and P K Sonsalla
Department of Neurology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA.

The mechanisms involved in methamphetamine (METH)-induced damage to nigrostriatal dopaminergic neurons in experimental animals are unknown. We have examined the possibility that perturbations in energy metabolism contribute to METH-induced toxicity by investigating the effects of systemic METH treatment in mice which received a unilateral intrastriatal infusion of malonate, a metabolic inhibitor which decreases ATP levels. Malonate (1-4 mumol) produced a dose-dependent decrease in striatal dopamine (DA). The combined treatment of intrastriatal malonate with systemic METH resulted in greater damage to dopaminergic neurons than by METH or malonate treatment alone. In parallel studies, MPTP was administered to mice which received intrastriatal infusions of saline or malonate. Similar to results obtained with METH, decreases in striatal DA content and tyrosine hydroxylase (TH) activity were greatest in MPTP-treated mice infused with malonate. The present results lend credence to the hypothesis that METH-induced increases in energy utilization create a state of metabolic stress for DA neurons which may ultimately contribute to the neurodegenerative effects of METH. Moreover, the finding that combined malonate and MPTP treatment produced greater damage than either substance alone is consistent with the hypothesis that perturbations in energy metabolism contribute to the neuronal death produced by MPP+.

UI MeSH Term Description Entries
D008297 Male Males
D008314 Malonates Derivatives of malonic acid (the structural formula CH2(COOH)2), including its salts and esters.
D008694 Methamphetamine A central nervous system stimulant and sympathomimetic with actions and uses similar to DEXTROAMPHETAMINE. The smokable form is a drug of abuse and is referred to as crank, crystal, crystal meth, ice, and speed. Deoxyephedrine,Desoxyephedrine,Desoxyn,Madrine,Metamfetamine,Methamphetamine Hydrochloride,Methylamphetamine,N-Methylamphetamine,Hydrochloride, Methamphetamine,N Methylamphetamine
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase
D015259 Dopamine Agents Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons. Dopamine Drugs,Dopamine Effect,Dopamine Effects,Dopaminergic Agents,Dopaminergic Drugs,Dopaminergic Effect,Dopaminergic Effects,Agents, Dopamine,Agents, Dopaminergic,Drugs, Dopamine,Drugs, Dopaminergic,Effect, Dopamine,Effect, Dopaminergic,Effects, Dopamine,Effects, Dopaminergic
D015632 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine A dopaminergic neurotoxic compound which produces irreversible clinical, chemical, and pathological alterations that mimic those found in Parkinson disease. MPTP,N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Related Publications

D S Albers, and G D Zeevalk, and P K Sonsalla
February 1989, Brain research,
D S Albers, and G D Zeevalk, and P K Sonsalla
January 1979, International journal of neurology,
D S Albers, and G D Zeevalk, and P K Sonsalla
February 2012, Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,
D S Albers, and G D Zeevalk, and P K Sonsalla
May 1992, Annals of the New York Academy of Sciences,
D S Albers, and G D Zeevalk, and P K Sonsalla
January 2018, International journal of toxicology,
D S Albers, and G D Zeevalk, and P K Sonsalla
March 2011, The Journal of pharmacology and experimental therapeutics,
D S Albers, and G D Zeevalk, and P K Sonsalla
June 1975, The Journal of pharmacy and pharmacology,
Copied contents to your clipboard!