Spatial frequency-dependent asymmetry of visual evoked potential amplitudes. 1996

K F van Orden, and J F House
Environmental Stress Department, Naval Medical Research Institute, USA. vanorden@nhrc.navy.mil

The extent to which pattern reversal evoked potential amplitudes are distributed symmetrically over the scalp was investigated as a function of stimulus spatial frequency. Nine right-handed male subjects viewed sinusoidal grating stimuli of 4.0 and 0.5 c/deg phase reversed every 900 msec. A visual half-field configuration enabled selective stimulation of the right- or left-hemisphere visual cortex. Evoked responses were recorded from the 2 cm above the inion (Oz) and at 7 and 13 cm lateral to Oz. Analyses of normalized evoked response amplitudes showed a significant asymmetry for the 4.0 c/deg stimulus; right-hemisphere amplitudes declined as a function of distance from the midline, while left-hemisphere amplitudes were greatest at the 7 cm recording site. No hemispheric differences were observed for the 0.5 c/deg stimulus; amplitudes for both hemispheres declined as a function of distance from the midline. The data are discussed in terms of hemispheric differences in morphology and functional asymmetries at early levels of sensory processing.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010364 Pattern Recognition, Visual Mental process to visually perceive a critical number of facts (the pattern), such as characters, shapes, displays, or designs. Recognition, Visual Pattern,Visual Pattern Recognition
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

K F van Orden, and J F House
January 1982, Annals of the New York Academy of Sciences,
K F van Orden, and J F House
November 2004, Documenta ophthalmologica. Advances in ophthalmology,
K F van Orden, and J F House
January 2009, Acta neurologica Scandinavica. Supplementum,
K F van Orden, and J F House
March 1998, Electroencephalography and clinical neurophysiology,
K F van Orden, and J F House
September 1988, Documenta ophthalmologica. Advances in ophthalmology,
K F van Orden, and J F House
January 1977, Neuropsychologia,
K F van Orden, and J F House
March 2000, Experimental brain research,
K F van Orden, and J F House
January 1984, Vision research,
K F van Orden, and J F House
May 2006, Neuroreport,
K F van Orden, and J F House
May 2013, Experimental brain research,
Copied contents to your clipboard!