Embryonic chick muscle produces an FGF-like activity. 1996

D S Morris, and S J Stock, and J C McLachlan
School of Biological and Medical Sciences, University of St. Andrews, Scotland United Kingdom.

Normal and pathological formation of blood vessels is of considerable interest both in terms of basic scientific processes and clinical applications. Angiogenic events in the adult are likely to represent persistence of developmental mechanisms, and embryos are therefore a suitable experimental model for these processes. Among embryonic tissues, muscle is particularly appropriate for investigation, since it is highly vascularised from early stages. There are a number of competing explanations of how this process is controlled. Bioassays offer advantages over conventional molecular localisation techniques, in that they reveal the presence of active processed forms of the molecules under study, rather than non-processed forms, or non-translated messages. Using these techniques, we report here that embryonic chick muscle, taken from the stages at which blood vessels are forming, produces an angiogenic activity on the chick chorioallantoic membrane (CAM), and transforms NR6 cells in soft agar. Basic fibroblast growth factor (bFGF) is shown to be angiogenic on the CAM in the same way, and also transforms NR6 cells (NR6 cells lack functional epidermal growth factor/transforming growth factor-a receptors, and are believed to respond only to bFGF in this way). Anti-bFGF removes the transforming activity of the embryonic muscle. We conclude that this represents evidence that embryonic chick muscle is producing an FGF-like molecule which is capable of acting as an angiogenic agent at the appropriate times in development.

UI MeSH Term Description Entries
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002823 Chorion The outermost extra-embryonic membrane surrounding the developing embryo. In REPTILES and BIRDS, it adheres to the shell and allows exchange of gases between the egg and its environment. In MAMMALS, the chorion evolves into the fetal contribution of the PLACENTA. Chorions
D000482 Allantois An extra-embryonic membranous sac derived from the YOLK SAC of REPTILES; BIRDS; and MAMMALS. It lies between two other extra-embryonic membranes, the AMNION and the CHORION. The allantois serves to store urinary wastes and mediate exchange of gas and nutrients for the developing embryo. Allantoic Membrane,Membrane, Allantoic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018919 Neovascularization, Physiologic The development of new BLOOD VESSELS during the restoration of BLOOD CIRCULATION during the healing process. Angiogenesis, Physiologic,Angiogenesis, Physiological,Neovascularization, Physiological,Physiologic Angiogenesis,Physiologic Neovascularization,Physiological Angiogenesis,Physiological Neovascularization

Related Publications

D S Morris, and S J Stock, and J C McLachlan
May 1997, Cellular and molecular life sciences : CMLS,
D S Morris, and S J Stock, and J C McLachlan
March 1971, The Journal of cell biology,
D S Morris, and S J Stock, and J C McLachlan
September 1986, Endocrinology,
D S Morris, and S J Stock, and J C McLachlan
January 1977, Progress in clinical and biological research,
D S Morris, and S J Stock, and J C McLachlan
April 1981, The Biochemical journal,
D S Morris, and S J Stock, and J C McLachlan
December 1984, Developmental biology,
D S Morris, and S J Stock, and J C McLachlan
April 1975, FEBS letters,
D S Morris, and S J Stock, and J C McLachlan
September 1990, Differentiation; research in biological diversity,
D S Morris, and S J Stock, and J C McLachlan
March 1967, The Journal of cell biology,
D S Morris, and S J Stock, and J C McLachlan
March 2008, Neurological research,
Copied contents to your clipboard!