Chloride conductance is activated by membrane distention of cultured chick heart cells. 1996

J Zhang, and M Lieberman
Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.

OBJECTIVE The aim was to apply various maneuvers to perturb the volume of cultured chick cardiac myocytes and to evaluate the association between the swelling-activated chloride conductance and membrane distention. METHODS Swelling of single chick heart cells was induced by (1) reduction of external osmolarity; (2) elevation of intracellular osmolarity; (3) isosmotic urea uptake; and (4) positive pressure injection. Changes in cell volume and whole-cell currents were recorded simultaneously and a comparison among differently activated whole-cell currents was made in terms of time course, reversal potential (Erev), whole-cell conductance, and response to a number of channel blockers. RESULTS Although the time course of cell swelling varied between the different experimental maneuvers, the resultant whole-cell current displayed nearly identical current-voltage relationships: outward rectification and a reversal potential near the calculated chloride equilibrium potential (ECl). The induced currents were inhibited by Cl- channel blockers, diphenylamine-2-carboxylate (DPC) and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), and were almost completely suppressed by gadolinium. In addition, the Cl- conductance activated by hyposmotic swelling was largely reversed when cell volume was reduced by applying negative pressure through the whole-cell patch pipette. CONCLUSIONS The close relationship between the degree of cell volume increase and current activation suggests that membrane distention induced by cell swelling triggers a Cl(-)-selective conductance in cardiac myocytes.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell
D018118 Chloride Channels Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN. CaCC,Calcium-Activated Chloride Channel,Chloride Ion Channel,Chlorine Channel,Ion Channels, Chloride,CaCCs,Calcium-Activated Chloride Channels,Chloride Channel,Chloride Ion Channels,Chlorine Channels,Ion Channel, Chloride,Calcium Activated Chloride Channel,Calcium Activated Chloride Channels,Channel, Calcium-Activated Chloride,Channel, Chloride,Channel, Chloride Ion,Channel, Chlorine,Channels, Calcium-Activated Chloride,Channels, Chloride,Channels, Chloride Ion,Channels, Chlorine,Chloride Channel, Calcium-Activated,Chloride Channels, Calcium-Activated

Related Publications

J Zhang, and M Lieberman
October 1992, Molecular and cellular endocrinology,
J Zhang, and M Lieberman
September 1985, The American journal of physiology,
J Zhang, and M Lieberman
May 1983, The Journal of general physiology,
J Zhang, and M Lieberman
November 2000, Acta pharmacologica Sinica,
J Zhang, and M Lieberman
October 1988, Pflugers Archiv : European journal of physiology,
J Zhang, and M Lieberman
November 1990, Kidney international. Supplement,
J Zhang, and M Lieberman
February 1994, Proceedings. Biological sciences,
Copied contents to your clipboard!