Glucose tolerance and insulin secretion after adrenalectomy in mice made obese with gold thioglucose. 1996

S C Blair, and I D Caterson, and G J Cooney
Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.

The effect of adrenalectomy (ADX) on glucose tolerance and insulin secretion was examined in conscious mice made obese by a single injection of gold thioglucose (GTG). To facilitate such a study a chronic jugular catheter was implanted into the mice at the time of performing the ADX or sham-ADX. One week after ADX, the body weight (GTG-obese+sham-ADX, 35.6 +/- 0.6 g; GTG-obese+ADX, 33.1 +/- 0.6 g; P < 0.05) and glycogen content of the liver (GTG-obese+sham-ADX, 2.4 +/- 0.2 mumol/liver; GTG-obese+ADX, 1.6 +/- 0.1 mumol/liver; P < 0.05) of GTG-injected mice were reduced. Plasma glucose concentrations, in both the overnight fasted state and in response to an intravenous glucose load were also reduced following ADX of GTG-obese mice, but not to the level of the sham-ADX control mice. However, ADX completely normalized plasma insulin concentrations in both the basal state and also in response to a glucose load, as indicated by the finding that the integrated insulin secretory response of the ADX GTG-obese mice was not different from that of sham-ADX control mice (control+sham-ADX, 192 +/- 5 min.microU/ml; GTG-obese+ADX, 196 +/- 10 min.microU/ml). The effects of ADX on carbohydrate metabolism were not restricted to GTG-injected mice, as ADX of control mice decreased fasting plasma glucose levels and reduced liver glycogen and plasma insulin concentrations. The normalization of insulin release in ADX GTG-obese mice occurred while these mice were still obese and glucose intolerant. This suggests that the decreased insulin release was not due solely to an ADX-induced improvement in insulin sensitivity and/or weight loss. Removal of central glucocorticoid effects on the parasympathetic stimulation of insulin release may play a role in the reduced insulin release observed after ADX of obese and control mice, although peripheral effects of glucocorticoid deficiency on glycogen synthesis in the liver may also influence whole animal glucose homeostasis.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005951 Glucose Tolerance Test A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg). Intravenous Glucose Tolerance,Intravenous Glucose Tolerance Test,OGTT,Oral Glucose Tolerance,Oral Glucose Tolerance Test,Glucose Tolerance Tests,Glucose Tolerance, Oral
D006003 Glycogen
D006051 Aurothioglucose A thioglucose derivative used as an antirheumatic and experimentally to produce obesity in animals. Gold Thioglucose,Aureotan,Auromyose,Aurothioglucose, Sodium Salt, beta-D Isomer,Aurothioglucose, beta-D Isomer,Gold-50,Solganal,Solganal B Oleosum,Solganol,Thioglucosoaurate,Aurothioglucose, beta D Isomer,B Oleosum, Solganal,Gold 50,Gold50,Oleosum, Solganal B,Thioglucose, Gold,beta-D Isomer Aurothioglucose

Related Publications

S C Blair, and I D Caterson, and G J Cooney
May 1983, Endocrinology,
S C Blair, and I D Caterson, and G J Cooney
January 1986, Physiology & behavior,
S C Blair, and I D Caterson, and G J Cooney
January 1986, Physiology & behavior,
S C Blair, and I D Caterson, and G J Cooney
February 1989, Canadian journal of physiology and pharmacology,
S C Blair, and I D Caterson, and G J Cooney
January 1965, Journal of pharmaceutical sciences,
S C Blair, and I D Caterson, and G J Cooney
May 2004, Metabolism: clinical and experimental,
S C Blair, and I D Caterson, and G J Cooney
November 2023, Diabetes, obesity & metabolism,
S C Blair, and I D Caterson, and G J Cooney
October 1997, Diabetes care,
Copied contents to your clipboard!