Polyadenylated RNA, actin mRNA, and myosin heavy chain mRNA in young and old human skeletal muscle. 1996

S Welle, and K Bhatt, and C Thornton
Department of Medicine, University of Rochester, New York 14620, USA.

The myofibrillar protein synthesis rate in old human skeletal muscle is slower than that in young adult muscle. To examine whether this difference in protein synthesis rate is explained by reduced availability of the mRNAs that encode the most abundant myofibrillar proteins, we determined relative hybridization signals from probes for actin mRNA, myosin heavy chain mRNA, and total polyadenylated RNA in vastus lateralis muscle biopsies taken from young (22- to 31-yr-old) and old (61- to 74-yr-old) human subjects. The mean fractional rate of myofibrillar synthesis was 38% slower in the older muscles, as determined by incorporation of a stable isotope tracer. Total actin and myosin heavy chain mRNAs, and polyadenylated RNA, were determined using slot-blot assays. Isoform-specific determinations of alpha-actin mRNA, type I myosin heavy chain mRNA, and type IIa myosin heavy chain mRNA were done with ribonuclease protection assays. Hybridization signals were expressed relative to tissue DNA content. There was no difference between age groups in total polyadenylated RNA or in any of the specific mRNAs. We conclude that the slower myofibrillar synthesis rate in older muscle is not caused by reduced mRNA availability.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

S Welle, and K Bhatt, and C Thornton
June 1997, The American journal of physiology,
S Welle, and K Bhatt, and C Thornton
June 1995, Journal of applied physiology (Bethesda, Md. : 1985),
S Welle, and K Bhatt, and C Thornton
July 2000, Muscle & nerve,
S Welle, and K Bhatt, and C Thornton
April 1990, Biochemical and biophysical research communications,
S Welle, and K Bhatt, and C Thornton
December 1998, The American journal of physiology,
S Welle, and K Bhatt, and C Thornton
April 2016, Journal of muscle research and cell motility,
S Welle, and K Bhatt, and C Thornton
June 1991, The American journal of physiology,
S Welle, and K Bhatt, and C Thornton
June 2002, The journals of gerontology. Series A, Biological sciences and medical sciences,
S Welle, and K Bhatt, and C Thornton
September 2011, Medicine and science in sports and exercise,
Copied contents to your clipboard!