Synthesis of fibronectin and laminin by type II pulmonary epithelial cells. 1996

S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey 17033, USA.

Previous investigations demonstrated that type II pulmonary epithelial cells regulate extracellular matrix deposition as a function of time in primary culture. In those studies, the matrix fraction was analyzed as a whole. The present work focused on two components of the type II cell matrix, fibronectin and laminin. These glycoproteins have differing effects on differentiation of type II cells in primary culture. Fibronectin synthesis was quantitated between day 1 and day 6 in the cells, matrix, and medium; laminin synthesis was quantitated only in the cells. Although total fibronectin synthesis was regulated as a function of time in culture, reaching its greatest value on day 2, the average proportion of newly synthesized fibronectin in the cells (35%), medium (50%), and matrix (15%) remained constant over a 6-day interval. Between day 2 and day 6, the relative abundance of fibronectin messenger RNA increased 6.5-fold. Rates of cellular laminin synthesis did not vary with time in culture. These results support a role for differential regulation of fibronectin and laminin synthesis to determine the composition of the type II cell extracellular matrix.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
December 1995, The American journal of physiology,
S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
May 1987, The American review of respiratory disease,
S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
May 1992, The American journal of physiology,
S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
January 1988, Tissue & cell,
S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
May 1980, Laboratory investigation; a journal of technical methods and pathology,
S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
February 1995, The American journal of physiology,
S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
September 1987, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
November 2013, American journal of respiratory cell and molecular biology,
S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
September 2014, Pediatric pulmonology,
S E Dunsmore, and Y C Lee, and C Martinez-Williams, and D E Rannels
September 1993, Investigative ophthalmology & visual science,
Copied contents to your clipboard!