Cardiovascular and sympathoadrenal responses to heat stress following water deprivation in rats. 1996

M P Massett, and D G Johnson, and K C Kregel
Department of Exercise Science, University of Iowa, Iowa City 52242, USA.

This study was designed to characterize the regional and systemic hemodynamic and sympathoadrenal responses to heating after 24 and 48 h of water deprivation in chloralose-anesthetized, male Sprague-Dawley rats (n = 7 per group). Water deprivation produced significant decreases in body weight of 8.1 and 13.7% in the 24- and 48-h groups (P < 0.05), respectively. After water deprivation, rats were exposed to an ambient temperature of 43 degrees C. After correction for body weight differences, heating rates were faster in the 48-h group compared with both euhydrated and 24-h groups. Mean arterial blood pressure (MAP), heart rate, and colonic (Tco) and tail (Ttail) temperatures increased above baseline in all groups during heating. Renal and mesenteric artery blood flow velocities decreased, and vascular resistances increased in response to heating. Compared with euhydrated controls, 48-h water-deprived rats exhibited attenuated pressor (delta MAP = 36 +/- 3 vs. 18 +/- 3 mmHg) and visceral vasoconstrictor (% delta in mesenteric resistance = 122.6 +/- 27.3 vs. 54.9 +/- 6.9%) responses during heating. Tail-skin blood flow estimated from Ttail was also lower at baseline and the onset of heating in water-deprived rats. However, peak Ttail and Tco values were similar across groups. Plasma catecholamines measured in separate groups of rats (n = 6 per group) were significantly higher at baseline and the end of heating in the 48-h group compared with euhydrated and 24-h groups. Despite this exaggerated sympathoadrenal response, the 48-h group exhibited attenuated hemodynamic responses to nonexertional heating compared with euhydrated and 24-h water-deprived rats. These data suggest that cardiovascular and thermoregulatory adjustments can compensate for small changes in hydration state (i.e., 24 h), but more severe levels of hypohydration significantly alter blood pressure and body temperature regulation during heat stress.

UI MeSH Term Description Entries
D008297 Male Males
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D002319 Cardiovascular System The HEART and the BLOOD VESSELS by which BLOOD is pumped and circulated through the body. Circulatory System,Cardiovascular Systems,Circulatory Systems
D003681 Dehydration The condition that results from excessive loss of water from a living organism. Water Stress,Stress, Water
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M P Massett, and D G Johnson, and K C Kregel
April 1985, Journal of applied physiology (Bethesda, Md. : 1985),
M P Massett, and D G Johnson, and K C Kregel
October 1986, Obstetrics and gynecology,
M P Massett, and D G Johnson, and K C Kregel
June 2003, The Journal of nutrition,
M P Massett, and D G Johnson, and K C Kregel
December 1988, The American journal of physiology,
M P Massett, and D G Johnson, and K C Kregel
October 1989, The American journal of physiology,
M P Massett, and D G Johnson, and K C Kregel
March 1997, The American journal of physiology,
M P Massett, and D G Johnson, and K C Kregel
May 1990, Journal of cardiovascular pharmacology,
M P Massett, and D G Johnson, and K C Kregel
January 2008, The Journal of physiology,
M P Massett, and D G Johnson, and K C Kregel
January 2015, Comprehensive Physiology,
M P Massett, and D G Johnson, and K C Kregel
May 1993, Physiology & behavior,
Copied contents to your clipboard!