Photo-cross-linking of rabbit skeletal troponin I deletion mutants with troponin C and its thiol mutants: the inhibitory region enhances binding of troponin I fragments to troponin C. 1996

P K Jha, and C Mao, and S Sarkar
Department of Anatomy and Cellular Biology, Tufts University, Boston, Massachusetrs 02111, USA.

Contraction of vertebrate striated muscle is regulated by the strong Ca(2+)-dependent interaction between troponin I (TnI) and troponin C (TnC). To critically evaluate this interaction, we generated four recombinant deletion fragments of rabbit fast skeletal TnI: the NH2-terminal fragment (TnI1-94), the NH2 terminus and the inhibitory region (TnI1-120), the inhibitory region and the COOH terminus (TnI96-181), and the COOH-terminal fragment (TnI122-181) containing amino acid residues 1-94, 1-120, 96-181, and 122-181, respectively. Native TnC and seven thiol mutants, containing single cysteine residues in the two globular domains and in the central helix of TnC, e.g., Cys-12, Cys-21, Cys-57, Cys-89, Cys-122, Cys-133, and Cys-158, were labeled with 4-maleimidobenzophenone, and their interaction with the recombinant TnI fragments and the synthetic inhibitory peptide (TnI98-114, residues 98-114) was studied by photo-cross-linking. Extensive cross-linking occurred between various domains of TnC and TnI. The cross-linking patterns (a) showed that both NH2- and COOH-terminal fragments of TnI are accessible to both of the globular domains of TnC, (b) indicated that linkage of the NH2- and COOH-terminal sequences to the inhibitory region of TnI (TnIir) caused marked enhancement of cross-linking with native TnC and all seven thiol mutants, and (c) identified the region in TnC where TnIir binds as that containing residues 98, 133, 158, and 57. Thus, the results suggest that TnI and TnC may adopt flexible and dynamic conformations in which multiple interactions involving various domains of the two polypeptides occur and TnIir acting as a linker facilitates these interactions. The interaction of TnI and its fragments with actin, TnC, and TnT, considered together with the biological activity indicates that residues 96-120 represent a key structural and functional region of TnI. Whereas the NH2-terminal region of TnI stabilizes binding to TnC and TnT, the COOH-terminal region stabilizes TnC and actin binding.

UI MeSH Term Description Entries
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking

Related Publications

P K Jha, and C Mao, and S Sarkar
February 1994, The Journal of biological chemistry,
P K Jha, and C Mao, and S Sarkar
October 1982, The Journal of biological chemistry,
P K Jha, and C Mao, and S Sarkar
March 1985, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
P K Jha, and C Mao, and S Sarkar
September 1991, Biochemistry and cell biology = Biochimie et biologie cellulaire,
P K Jha, and C Mao, and S Sarkar
November 1985, Biophysical journal,
Copied contents to your clipboard!