Binding of hisactophilin I and II to lipid membranes is controlled by a pH-dependent myristoyl-histidine switch. 1996

F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
Max-Planck-Institut für Biochemie, Martinsried, Germany.

The interaction of the two N-terminally myristoylated isoforms of Dictyostelium hisactophilin with lipid model membranes was investigated by means of the monolayer expansion method and high-sensitivity titration calorimetry. The two isoforms, hisactophilin I and hisactophilin II, were found to insert with their N-terminal myristoyl residue into an electrically neutral POPC monolayer corresponding in its lateral packing density to that of a lipid bilayer. The partition coefficient for this insertion process was Kp = (1.1 +/- 0.2) x 10(4) M-1. The area requirement of the protein in the lipid membrane was estimated as 44 +/- 6 A2 which corresponds to the cross sectional area of the myristoyl moiety with an additional small contribution from amino acid side chains. The interaction of hisactophilin I (hisactophilin II) with negatively charged membrane surfaces is modulated in a pH-dependent manner by charged amino acid residues clustered around the myristoyl moiety. The electrostatic binding site consists of three lysine (one arginine and two lysine), seven (nine) histidine, and four (four) glutamic acid residues and has an isoelectric point of 6.9 (7.1). For small unilamellar POPC/POPG (75/25 mole/mole) vesicles, an apparent binding constant, K(app) = (8 +/- 1) x 10(5) M-1, was measured at pH 6.0 by means of high-sensitivity titration calorimetry. Electrostatic interactions hence increase the binding constant by about 2 orders of magnitude compared to hydrophobic binding alone. With increasing pH, the electrostatic attraction decreases and turns into an electrostatic repulsion at pH > 7.0 +/- 0.1. The area occupied by the cluster of charged residues constituting the membrane binding region was 280 +/- 20 A2 as derived from monolayer measurements in close agreement with molecular modeling data derived from the NMR structure of hisactophilin I [Habazettl et al. (1992) Nature 359, 855-858].

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D005229 Fatty Acids, Monounsaturated Fatty acids which are unsaturated in only one position. Monounsaturated Fatty Acid,Acid, Monounsaturated Fatty,Acids, Monounsaturated Fatty,Fatty Acid, Monounsaturated,Monounsaturated Fatty Acids

Related Publications

F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
August 2011, Journal of molecular biology,
F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
December 2010, Proceedings of the National Academy of Sciences of the United States of America,
F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
December 1998, Biochemical and biophysical research communications,
F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
February 1989, The Journal of biological chemistry,
F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
September 2005, Proceedings of the National Academy of Sciences of the United States of America,
F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
April 2013, Chemistry and physics of lipids,
F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
June 2025, bioRxiv : the preprint server for biology,
F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
September 2010, Molecular immunology,
F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
July 1996, Journal of cell science,
F Hanakam, and G Gerisch, and S Lotz, and T Alt, and A Seelig
June 2002, Biophysical journal,
Copied contents to your clipboard!