Expression and activity of low Km, cGMP-inhibited cAMP phosphodiesterase in cardiac and skeletal muscle. 1996

M A Movsesian, and N Komas, and J Krall, and V C Manganiello
Research Service, Salt Lake City Veterans Affairs Medical Center, Utah, USA.

The expression and activity of low Km, cGMP-inhibited cAMP phosphodiesterase (PDE3)4 were examined in rabbit and canine cardiac and skeletal muscle. In cardiac muscle, a cDNA probe whose sequence encompasses the catalytic domain of human myocardial PDE3 (PDE3A) hybridized predominantly with a 7.2-7.4 kb mRNA. No hybridization was observed in preparations from slow or fast twitch skeletal muscle. Likewise, PDE3 activity was present in cytosolic and microsomal fractions of cardiac muscle but was absent from cytosolic and microsomal fractions of slow twitch and fast twitch skeletal muscle. These results, which demonstrate the absence of PDE3 from slow and fast twitch mammalian skeletal muscle, further delineate the differences in beta-adrenergic receptor-mediated signal transduction pathways in cardiac and skeletal muscle.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015105 3',5'-Cyclic-AMP Phosphodiesterases Enzymes that catalyze the hydrolysis of CYCLIC AMP to form adenosine 5'-phosphate. The enzymes are widely distributed in animal tissue and control the level of intracellular cyclic AMP. Many specific enzymes classified under this heading demonstrate additional spcificity for 3',5'-cyclic IMP and CYCLIC GMP. 3',5'-Cyclic AMP 5'-Nucleotidohydrolase,3',5'-Cyclic-Nucleotide Phosphodiesterase,CAMP Phosphodiesterase,3',5' Cyclic AMP Phosphodiesterase,3',5'-Cyclic AMP Phosphodiesterase,3',5'-Cyclic Nucleotide Phosphodiesterase,3',5'-Cyclic-AMP Phosphodiesterase,3',5'-Nucleotide Phosphodiesterase,3,5-Cyclic AMP 5-Nucleotidohydrolase,3,5-Cyclic AMP Phosphodiesterase,3',5' Cyclic AMP 5' Nucleotidohydrolase,3',5' Cyclic AMP Phosphodiesterases,3',5' Cyclic Nucleotide Phosphodiesterase,3',5' Nucleotide Phosphodiesterase,3,5 Cyclic AMP 5 Nucleotidohydrolase,3,5 Cyclic AMP Phosphodiesterase,5'-Nucleotidohydrolase, 3',5'-Cyclic AMP,5-Nucleotidohydrolase, 3,5-Cyclic AMP,AMP 5'-Nucleotidohydrolase, 3',5'-Cyclic,AMP 5-Nucleotidohydrolase, 3,5-Cyclic,AMP Phosphodiesterase, 3',5'-Cyclic,AMP Phosphodiesterase, 3,5-Cyclic,Nucleotide Phosphodiesterase, 3',5'-Cyclic,Phosphodiesterase, 3',5'-Cyclic AMP,Phosphodiesterase, 3',5'-Cyclic Nucleotide,Phosphodiesterase, 3',5'-Cyclic-AMP,Phosphodiesterase, 3',5'-Cyclic-Nucleotide,Phosphodiesterase, 3',5'-Nucleotide,Phosphodiesterase, 3,5-Cyclic AMP,Phosphodiesterase, CAMP,Phosphodiesterases, 3',5'-Cyclic-AMP

Related Publications

M A Movsesian, and N Komas, and J Krall, and V C Manganiello
January 1993, Biochemical and biophysical research communications,
M A Movsesian, and N Komas, and J Krall, and V C Manganiello
January 1990, Proceedings of the National Academy of Sciences of the United States of America,
M A Movsesian, and N Komas, and J Krall, and V C Manganiello
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
M A Movsesian, and N Komas, and J Krall, and V C Manganiello
January 1988, Methods in enzymology,
M A Movsesian, and N Komas, and J Krall, and V C Manganiello
June 1995, The Journal of biological chemistry,
M A Movsesian, and N Komas, and J Krall, and V C Manganiello
March 1992, Biochimica et biophysica acta,
M A Movsesian, and N Komas, and J Krall, and V C Manganiello
August 1992, The Journal of biological chemistry,
M A Movsesian, and N Komas, and J Krall, and V C Manganiello
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
M A Movsesian, and N Komas, and J Krall, and V C Manganiello
January 1997, Thrombosis and haemostasis,
M A Movsesian, and N Komas, and J Krall, and V C Manganiello
January 1986, Journal of cyclic nucleotide and protein phosphorylation research,
Copied contents to your clipboard!