Molecular correlates of delayed neuronal death following transient forebrain ischemia in the rat. 1996

C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
Max-Planck-Institute for Neurological Research, Department of Experiment Neurology, Cologne, Federal Republic of Germany.

Following transient forebrain ischemia selective and delayed neuronal degeneration occurs in the CA1 sector of the hippocampus. It is presently unclear whether this cell death is related to programmed cell death (PCD), which occurs in neurons during development of the CNS. Recently, the expression of various genes, such as c-fos, c-jun mkp-1, cyclin D1, and hsp70 was found to be associated with PCD in model systems. We and others have described that these genes are also upregulated in the hippocampus following ischemia. Most notably, c-fos, c-jun, and hsp70 are expressed specifically in CA1 neurons at survival times shortly preceding cell degeneration in rat models of global ischemia. In addition, the gene products could be detected by immunohistochemical methods, despite a general impairment of protein synthesis. These finding are especially relevant, since recent report suggests a functional role for Fos family proteins and c-jun in PCD in neurons of the superior cervical ganglion. These results could be indicative for the occurrence of a PCD-related program in CA1 neurons ad corroborate several other lines of evidences, such as occurrence of DNA fragmentation. Clearly, further studies are necessary to elucidate the functional role of the gene inductions following ischemia in vivo.

UI MeSH Term Description Entries
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016548 Prosencephalon The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed) Forebrain,Forebrains
D016755 Proto-Oncogene Proteins c-jun Cellular DNA-binding proteins encoded by the c-jun genes (GENES, JUN). They are involved in growth-related transcriptional control. There appear to be three distinct functions: dimerization (with c-fos), DNA-binding, and transcriptional activation. Oncogenic transformation can take place by constitutive expression of c-jun. c-fos-Associated Protein p39,c-jun Proteins,fos-Associated Protein p39,jun B Proteins,jun D Proteins,jun Proto-Oncogene Proteins,p39(c-jun),Proto-Oncogene Products c-jun,Proto-Oncogene Proteins jun,jun Proto-Oncogene Product p39,p39 c-jun,Proto Oncogene Products c jun,Proto Oncogene Proteins c jun,Proto Oncogene Proteins jun,c fos Associated Protein p39,c jun Proteins,fos Associated Protein p39,jun Proto Oncogene Product p39,jun Proto Oncogene Proteins,p39 c jun

Related Publications

C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
January 1984, Acta neuropathologica,
C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
June 1999, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
April 1993, Sheng li ke xue jin zhan [Progress in physiology],
C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
October 1997, Brain research,
C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
October 2000, Cellular and molecular neurobiology,
C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
May 2012, Neuroscience letters,
C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
May 2007, Journal of neuroscience research,
C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
August 2009, Korean journal of anesthesiology,
C Wiessner, and P Vogel, and T Neumann-Haefelin, and K A Hossmann
November 1992, Neuroscience letters,
Copied contents to your clipboard!