Inhibitory effect of the NMDA receptor antagonist, dizocilpine (MK-801), on the development of morphine dependence. 1996

M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
Department of Pharmacology, College of Pharmacy, Nihon University, Chiba, Japan.

We investigated the effect of a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imin ehydrogen maleate (dizocilpine, MK-801), on hippocampal norepinephrine release in morphine-treated rats in order to clarify the relationship between NMDA receptors and the development of morphine dependence. Naloxone hydrochloride injected subcutaneously (s.c.) into morphine-dependent rats, induced an immediate increase in hippocampal norepinephrine release, which was associated with a typical morphine withdrawal syndrome. The increased norepinephrine levels persisted for at least 2 hr, even after the disappearance of the behavioral withdrawal syndrome. This striking effect of naloxone on hippocampal norepinephrine release was dependent on the duration of the intracerebroventricular (i.c.v.) morphine infusion. Pretreatment with dizocilpine (s.c.) before naloxone challenge reduce the rate of the rise in hippocampal norepinephrine release induced by naloxone in morphine-treated rats. Concurrent infusion (i.c.v.) of dizocilpine and morphine decreased the level of hippocampal norepinephrine release after a naloxone challenge. Both pretreatment with dizocilpine (s.c.) before naxolone injection and infusion (i.c.v.) of dizocilpine suppressed rearing and teeth-chattering signs, but not wet-dog shakes in morphine-treated rats. These results suggest that dizocilpine attenuates the development of morphine dependence through NMDA receptors, and thus that interaction between opioid receptors and NMDA receptors may be involved in the development of morphine dependence.

UI MeSH Term Description Entries
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009021 Morphine Dependence Strong dependence, both physiological and emotional, upon morphine. Morphine Abuse,Morphine Addiction,Abuse, Morphine,Addiction, Morphine,Dependence, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
January 1991, Science (New York, N.Y.),
M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
June 1996, Psychopharmacology,
M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
March 1991, Pharmacology, biochemistry, and behavior,
M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
February 1996, Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology,
M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
March 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
December 1990, Behavioural brain research,
M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
January 1993, Proceedings of the Western Pharmacology Society,
M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
October 1992, Neuropeptides,
M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
December 1997, Journal of neurosurgery,
M Makimura, and H Sugimoto, and K Shinomiya, and Y Kabasawa, and H Fukuda
October 1993, Journal of anesthesia,
Copied contents to your clipboard!