The association rate constant for heme binding to globin is independent of protein structure. 1996

M S Hargrove, and D Barrick, and J S Olson
Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892, USA.

Rate constants for CO-heme binding to 35 different recombinant apomyoglobins and several other apoproteins were measured in an effort to understand the factors governing heme affinity and the velocity of the association reaction. Surprisingly, the rate constant for the binding of monomeric heme is approximately 1 x 10(8) M-1 s-1 regardless of the structure or overall affinity of the apoprotein for iron-porphyrin. Major differences between the proteins are reflected primarily in the rates of dissociation of the prosthetic group. Slow phases observed in the reaction of CO heme with excess apomyoglobin result from formation of nonspecific heme-protein complexes which must dissociate before heme can bind specifically in the heme pocket. Once the specific heme-globin complex is formed, the heme pocket rapidly collapses around the porphyrin, simultaneously forming the bond between the proximal His93 and the heme iron atom. The overall affinity of sperm whale apomyoglobin for hemin is approximately 1 x 10(14) M-1. Nonspecific hydrophobic interactions between the porphyrin and the apolar heme cavity account for a factor of 10(5)-10(7). Covalent bond formation between Fe3+ and His93(F8) provides an additional factor of 10(3)-10(4). Specific interactions with conserved amino acids in the heme pocket contribute the final factor of 10(3)-10(4).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006420 Hemeproteins Proteins that contain an iron-porphyrin, or heme, prosthetic group resembling that of hemoglobin. (From Lehninger, Principles of Biochemistry, 1982, p480) Hemeprotein,Heme Protein,Heme Proteins,Protein, Heme,Proteins, Heme
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001059 Apoproteins The protein components of a number of complexes, such as enzymes (APOENZYMES), ferritin (APOFERRITINS), or lipoproteins (APOLIPOPROTEINS). Apoprotein

Related Publications

M S Hargrove, and D Barrick, and J S Olson
July 1993, FEBS letters,
M S Hargrove, and D Barrick, and J S Olson
March 1980, Proceedings of the National Academy of Sciences of the United States of America,
M S Hargrove, and D Barrick, and J S Olson
January 1972, Hamatologie und Bluttransfusion,
M S Hargrove, and D Barrick, and J S Olson
October 1962, Biochimica et biophysica acta,
M S Hargrove, and D Barrick, and J S Olson
September 2023, Biochemistry,
M S Hargrove, and D Barrick, and J S Olson
October 2006, Journal of molecular biology,
M S Hargrove, and D Barrick, and J S Olson
October 1989, Biochemistry,
Copied contents to your clipboard!