Cholinergic/GABAergic interaction in the production of EEG theta oscillations in rat hippocampal formation in vitro. 1996

H Gołebiewski, and B Eckersdorf, and J Konopacki
Department of Neurobiology, University of Lódź, Poland.

The generation of EEG theta rhythm (RSA) in the hippocampal formation is a prime example of rhythmic activity involving central mechanisms of oscillation and synchrony. Cholinergic nature of the in vitro and in vivo induced RSA has been undoubtedly established. Recently, we have demonstrated in vitro that the hippocampal formation theta rhythm resulted from interaction between the cholinergic and GABAergic systems. In the present study we have provided additional in vitro evidence that the hippocampal GABA-A receptors are actively involved in the mechanism of theta production. Specifically, we demonstrated that bicuculline-GABA-A antagonist significantly augmented carbachol induced theta response increasing amplitude and power of rhythmical slow waves. In separate experiments the carbachol+bicuculline induced RSA were studied in the presence of muscarinic M1 and M2 antagonists--pirenzepine and gallamine (respectively) and GABA-A agonist--muscimol. Both pirenzepine and muscimol antagonized induced theta oscillations and gallamine was found to be completely ineffective in blocking this EEG response. The results provided evidence for M1 cholinergic/GABA-Aergic interaction in mechanisms responsible for theta production.

UI MeSH Term Description Entries
D008297 Male Males
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013826 Theta Rhythm Brain waves characterized by a frequency of 4-7 Hz, usually observed in the temporal lobes when the individual is awake, but relaxed and sleepy. Rhythm, Theta,Rhythms, Theta,Theta Rhythms
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

H Gołebiewski, and B Eckersdorf, and J Konopacki
July 1993, Neuroreport,
H Gołebiewski, and B Eckersdorf, and J Konopacki
January 2005, Hippocampus,
H Gołebiewski, and B Eckersdorf, and J Konopacki
December 2020, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Gołebiewski, and B Eckersdorf, and J Konopacki
March 2017, Brain structure & function,
H Gołebiewski, and B Eckersdorf, and J Konopacki
April 2012, Hippocampus,
H Gołebiewski, and B Eckersdorf, and J Konopacki
August 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Gołebiewski, and B Eckersdorf, and J Konopacki
May 1992, The Journal of physiology,
H Gołebiewski, and B Eckersdorf, and J Konopacki
September 2004, Brain research,
H Gołebiewski, and B Eckersdorf, and J Konopacki
January 1988, Proceedings of the Western Pharmacology Society,
H Gołebiewski, and B Eckersdorf, and J Konopacki
September 1999, The Journal of physiology,
Copied contents to your clipboard!