Antisense technology reveals the alpha2A adrenoceptor to be the subtype mediating the hypnotic response to the highly selective agonist, dexmedetomidine, in the locus coeruleus of the rat. 1996

T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, California, 94304 USA.

Alpha2 adrenergic agonists are used in the anesthetic management of the surgical patient for their sedative/hypnotic properties although the alpha2 adrenoceptor subtype responsible for these anesthetic effects is not known. Using a gene-targeting strategy, it is possible to specifically reduce the expression of the individual adrenoceptors expressed in the central nervous system and to thereby determine their role in hypnotic action. Stably transfected cell lines (PC 124D for rat alpha2A; NIH3T3 for rat alpha2C adrenoceptors) were exposed to 5 microM antisense oligodeoxynucleotides (ODNs) for alpha2A and alpha2C adrenergic receptor subtypes for 3 d. Individual receptor subtype expression, as determined by radiolabeled ligand binding, was selectively decreased only by the appropriate antisense ODNs and not by the "scrambled" ODNs. These antisense ODNs were then administered three times, on alternate days, into the locus coeruleus of chronically cannulated rats and their hypnotic response to dexmedetomidine (an alpha2 agonist) was determined. Only the alpha2A antisense ODNs significantly change the hypnotic response causing both an increase in latency to, and a decrease in duration of, the loss of righting reflex following dexmedetomidine; hypnotic response had normalized 8 d after stopping the ODNs. Therefore, the alpha2A adrenoceptor subtype is responsible for the hypnotic response to dexmedetomidine in the locus coeruleus of the rat.

UI MeSH Term Description Entries
D006993 Hypnotics and Sedatives Drugs used to induce drowsiness or sleep or to reduce psychological excitement or anxiety. Hypnotic,Sedative,Sedative and Hypnotic,Sedatives,Hypnotic Effect,Hypnotic Effects,Hypnotics,Sedative Effect,Sedative Effects,Sedatives and Hypnotics,Effect, Hypnotic,Effect, Sedative,Effects, Hypnotic,Effects, Sedative,Hypnotic and Sedative
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016376 Oligonucleotides, Antisense Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize. Anti-Sense Oligonucleotide,Antisense Oligonucleotide,Antisense Oligonucleotides,Anti-Sense Oligonucleotides,Anti Sense Oligonucleotide,Anti Sense Oligonucleotides,Oligonucleotide, Anti-Sense,Oligonucleotide, Antisense,Oligonucleotides, Anti-Sense
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018341 Receptors, Adrenergic, alpha-2 A subclass of alpha-adrenergic receptors found on both presynaptic and postsynaptic membranes where they signal through Gi-Go G-PROTEINS. While postsynaptic alpha-2 receptors play a traditional role in mediating the effects of ADRENERGIC AGONISTS, the subset of alpha-2 receptors found on presynaptic membranes signal the feedback inhibition of NEUROTRANSMITTER release. Adrenergic alpha-2 Receptors,Receptors, alpha-2 Adrenergic,alpha-2 Adrenergic Receptors,Adrenergic Receptor alpha(2C),Adrenergic Receptor alpha(2d),Adrenergic Receptor alpha-2C,Adrenergic Receptor alpha-2b,Adrenergic Receptor, alpha-2,Adrenergic alpha-2A Receptors,Adrenergic alpha-2B Receptors,Adrenergic alpha-2C Receptors,Adrenergic alpha-2D Receptors,Receptor, Adrenergic, alpha-2,Receptor, Adrenergic, alpha-2A,Receptor, Adrenergic, alpha-2B,Receptor, Adrenergic, alpha-2C,Receptor, Adrenergic, alpha-2D,Receptors, Adrenergic, alpha-2A,Receptors, Adrenergic, alpha-2B,Receptors, Adrenergic, alpha-2D,alpha 2 Adrenergic Receptors,alpha-2A Adrenergic Receptor,alpha-2B Adrenergic Receptor,alpha-2C Adrenergic Receptor,alpha-2D Adrenergic Receptor,Adrenergic Receptor alpha 2C,Adrenergic Receptor alpha 2b,Adrenergic Receptor, alpha 2,Adrenergic Receptor, alpha-2A,Adrenergic Receptor, alpha-2B,Adrenergic Receptor, alpha-2C,Adrenergic Receptor, alpha-2D,Adrenergic Receptors, alpha-2,Adrenergic alpha 2 Receptors,Adrenergic alpha 2A Receptors,Adrenergic alpha 2B Receptors,Adrenergic alpha 2C Receptors,Adrenergic alpha 2D Receptors,Receptor alpha-2C, Adrenergic,Receptor alpha-2b, Adrenergic,Receptor, alpha-2 Adrenergic,Receptor, alpha-2A Adrenergic,Receptor, alpha-2B Adrenergic,Receptor, alpha-2C Adrenergic,Receptor, alpha-2D Adrenergic,Receptors, Adrenergic alpha-2,Receptors, Adrenergic alpha-2A,Receptors, Adrenergic alpha-2B,Receptors, Adrenergic alpha-2C,Receptors, Adrenergic alpha-2D,Receptors, alpha 2 Adrenergic,alpha 2A Adrenergic Receptor,alpha 2B Adrenergic Receptor,alpha 2C Adrenergic Receptor,alpha 2D Adrenergic Receptor,alpha-2 Adrenergic Receptor,alpha-2 Receptors, Adrenergic,alpha-2A Receptors, Adrenergic,alpha-2B Receptors, Adrenergic,alpha-2C Receptors, Adrenergic,alpha-2C, Adrenergic Receptor,alpha-2D Receptors, Adrenergic,alpha-2b, Adrenergic Receptor
D020926 Medetomidine An agonist of RECEPTORS, ADRENERGIC ALPHA-2 that is used in veterinary medicine for its analgesic and sedative properties. It is the racemate of DEXMEDETOMIDINE. Levomedetomidine,MPV-785,Medetomidine Hydrochloride,Hydrochloride, Medetomidine,MPV 785,MPV785

Related Publications

T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
June 1992, Anesthesiology,
T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
December 1994, Anesthesiology,
T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
August 1998, Naunyn-Schmiedeberg's archives of pharmacology,
T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
June 1996, European journal of pharmacology,
T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
August 1991, Anesthesiology,
T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
December 1992, The Journal of pharmacology and experimental therapeutics,
T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
June 1992, Anesthesiology,
T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
September 1993, British journal of anaesthesia,
T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
November 1992, Pharmacology, biochemistry, and behavior,
T Mizobe, and K Maghsoudi, and K Sitwala, and G Tianzhi, and J Ou, and M Maze
February 2008, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!