Effects of dicarboxylic acids on fatty acid-metabolizing enzymes in cultured rat hepatocytes. 1995

T Sato, and N Murayama, and Y Yamazoe, and R Kato
Department of Pharmacology, Keio University, Tokyo, Japan.

A clear chain-length dependent effect was observed for peroxisomal fatty acid beta-oxidation and carnitine acetyltransferase and also for mitochondrial carnitine palmitoyltransferase in primary cultures of rat hepatocytes. The extent of modulation of peroxisomal beta-oxidation was higher with even-carbon numbered dicarboxylic acids than with odd-carbon numbered ones, although such a tendency was not detected in the mitochondrial reactions. These results indicate difference in the effect of fatty acid-derived dicarboxylates on peroxisomal and mitochondrial functions.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002333 Carnitine Acyltransferases Acyltransferases in the inner mitochondrial membrane that catalyze the reversible transfer of acyl groups from acyl-CoA to L-carnitine and thereby mediate the transport of activated fatty acids through that membrane. EC 2.3.1. Acylcarnitine Translocase,Carnitine Translocase,Carnitine-Acetylcarnitine Translocase,Carnitine-Acylcarnitine Translocase,Acyltransferases, Carnitine,Carnitine Acetylcarnitine Translocase,Carnitine Acylcarnitine Translocase,Translocase, Acylcarnitine,Translocase, Carnitine,Translocase, Carnitine-Acetylcarnitine,Translocase, Carnitine-Acylcarnitine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002994 Clofibrate A fibric acid derivative used in the treatment of HYPERLIPOPROTEINEMIA TYPE III and severe HYPERTRIGLYCERIDEMIA. (From Martindale, The Extra Pharmacopoeia, 30th ed, p986) Athromidin,Atromid,Atromid S,Clofibric Acid, Ethyl Ester,Ethyl Chlorophenoxyisobutyrate,Miscleron,Miskleron,Chlorophenoxyisobutyrate, Ethyl
D003998 Dicarboxylic Acids Acyclic acids that contain two carboxyl groups and have the formula HO2C-R-CO2H, where R may be an aromatic or aliphatic group. Acids, Dicarboxylic
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

T Sato, and N Murayama, and Y Yamazoe, and R Kato
March 1996, European journal of biochemistry,
T Sato, and N Murayama, and Y Yamazoe, and R Kato
November 1990, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
T Sato, and N Murayama, and Y Yamazoe, and R Kato
April 1994, Cell biology and toxicology,
T Sato, and N Murayama, and Y Yamazoe, and R Kato
February 1990, Biochimica et biophysica acta,
T Sato, and N Murayama, and Y Yamazoe, and R Kato
September 2002, Drug metabolism and disposition: the biological fate of chemicals,
T Sato, and N Murayama, and Y Yamazoe, and R Kato
July 1971, Journal of medicinal chemistry,
T Sato, and N Murayama, and Y Yamazoe, and R Kato
May 1994, Biochemical Society transactions,
T Sato, and N Murayama, and Y Yamazoe, and R Kato
May 1991, The Biochemical journal,
T Sato, and N Murayama, and Y Yamazoe, and R Kato
June 1989, The Journal of biological chemistry,
Copied contents to your clipboard!