Serum bactericidal activities and comparative pharmacokinetics of meropenem and imipenem-cilastatin. 1996

M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
Department for Chest and Infectious Diseases, City-Hospital Zehlendorf, Berlin, Germany.

The pharmacokinetics and serum bactericidal activities (SBAs) of imipenem and meropenem were investigated in a randomized crossover study. Twelve healthy male volunteers received a constant 30-min infusion of either 1 g of imipenem plus 1 g of cilastatin or 1 g of meropenem. The concentrations of the drugs in serum and urine were determined by bioassay and high-pressure liquid chromatography. Pharmacokinetic parameters were based on an open two-compartment model and a noncompartmental technique. At the end of infusion, the mean concentrations of imipenem and meropenem measured in serum were 61.2 +/- 9.8 and 51.6 +/- 6.5 mg/liter, respectively; urinary recoveries were 48.6% +/- 8.2% and 60.0% +/- 6.5% of the dose in 12 h, respectively; and the areas under the concentration-time curve from time zero to infinity were 96.1 +/- 14.4 and 70.5 +/- 10.3 mg.h/liter, respectively (P < or = 0.02). Imipenem had a mean half-life of 66.7 +/- 10.4 min; that of meropenem was 64.4 +/- 6.9 min. The volumes of distribution at steady state of imipenem and meropenem were 15.3 +/- 3.3 and 18.6 +/- 3.0 liters/70 kg, respectively, and the mean renal clearances per 1.73 m2 were 85.6 +/- 17.6 and 144.6 +/- 26.0 ml/min, respectively. Both antibiotics were well tolerated in this single-dose administration study. The SBAs were measured by the microdilution method of Reller and Stratton (L. B. Reller and C. W. Stratton, J. Infect. Dis. 136:196-204, 1977) against 40 clinically isolated strains. Mean reciprocal bactericidal titers were measured 1 and 6 h after administration. After 1 and 6 h the median SBAs for imipenem and meropenem, were 409 and 34.9 and 97.9 and 5.8, respectively, against Staphylococcus aureus, 19.9 and 4.4 and 19.4 and 4.8, respectively, against Pseudomonas aeruginosa, 34.3 and 2.2 and 232 and 15.5, respectively, against Enterobacter cloacae, and 13.4 and 2.25 and 90.7 and 7.9, respectively, against Proteus mirabilis. Both drugs had rather short biological elimination half-lives and a predominantly renal route of elimination. Both carbapenems revealed high SBAs against clinically important pathogens at 1 h; meropenem had a higher SBA against E. cloacae and P. mirabilis, and the SBA of imipenem against S. aureus was greater than the SBA of meropenem.

UI MeSH Term Description Entries
D008297 Male Males
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D001770 Blood Bactericidal Activity The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST. Activities, Blood Bactericidal,Activity, Blood Bactericidal,Bactericidal Activities, Blood,Bactericidal Activity, Blood,Blood Bactericidal Activities
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D004359 Drug Therapy, Combination Therapy with two or more separate preparations given for a combined effect. Combination Chemotherapy,Polychemotherapy,Chemotherapy, Combination,Combination Drug Therapy,Drug Polytherapy,Therapy, Combination Drug,Chemotherapies, Combination,Combination Chemotherapies,Combination Drug Therapies,Drug Polytherapies,Drug Therapies, Combination,Polychemotherapies,Polytherapies, Drug,Polytherapy, Drug,Therapies, Combination Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077728 Cilastatin, Imipenem Drug Combination Combination of imipenem and cilastatin that is used in the treatment of bacterial infections; cilastatin inhibits renal dehydropeptidase I to prolong the half-life and increase the tissue penetration of imipenem, enhancing its efficacy as an anti-bacterial agent. Imipenem - Cilastatin,Imipenem - Cilastatin Sodium,Imipenem Cilastatin,Imipenem Cilastatin Sodium,Imipenem-Cilastatin,Imipenem-Cilastatin Sodium,Imipenem-Cilastatin, Sodium Salt,MK 0787-MK 0791 mixture,MK 787-MK 791 mixture,Primaxin,Thienam,Tienam 500,Zienam,Cilastatin, Imipenem,Imipenem Cilastatin, Sodium Salt,MK 0787 MK 0791 mixture,MK 787 MK 791 mixture
D000077731 Meropenem A thienamycin derivative antibacterial agent that is more stable to renal dehydropeptidase I than IMIPENEM, but does not need to be given with an enzyme inhibitor such as CILASTATIN. It is used in the treatment of bacterial infections, including infections in immunocompromised patients. 3-(5-Dimethylcarbamoylpyrrolidin-3-ylthio)-6-(1-hydroxyethyl)-4-methyl-7-oxo-1-azabicyclo(3.2.0)hept-2-ene-2-carboxylic acid,Merrem,Penem,Ronem,SM 7338,SM-7338,SM7338

Related Publications

M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
June 2020, Medecine et maladies infectieuses,
M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
October 1992, Antimicrobial agents and chemotherapy,
M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
February 1991, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
December 1985, European journal of clinical microbiology,
M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
September 1997, Enfermedades infecciosas y microbiologia clinica,
M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
April 1985, Antimicrobial agents and chemotherapy,
M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
November 1984, Antimicrobial agents and chemotherapy,
M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
January 1985, Reviews of infectious diseases,
M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
September 1993, Antimicrobial agents and chemotherapy,
M Dreetz, and J Hamacher, and J Eller, and K Borner, and P Koeppe, and T Schaberg, and H Lode
April 1990, Presse medicale (Paris, France : 1983),
Copied contents to your clipboard!