Serotonergic regulation of renin and prolactin secretion. 1996

L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
Department of Pharmacology, Loyola University of Chicago, IL 60153, USA.

Drugs that, directly or indirectly produce activation of serotonin (5-HT) receptors increase plasma concentrations of both prolactin and renin. The serotonergic regulation of prolactin and renin secretion share several common characteristics. Serotonergic neurons originating in the dorsal raphe and terminating in the hypothalamus stimulate the secretion of both prolactin and renin. Destruction of cells in the hypothalamic paraventricular nucleus (PVN) inhibits both the prolactin and renin responses to 5-HT agonists and 5-HT-releasing drugs. Activation of 5-HT2 receptors increases the secretion of both prolactin and renin, while activation of other 5-HT receptor subtypes has differential effects on these hormones. However, there are also differences between the serotonergic mechanisms that regulate the secretion of prolactin and renin. Activation of 5-HT1A receptors increases the secretion of prolactin but not of renin. In addition, activation of peripheral 5-HT2 receptors stimulates the secretion of renin, while activation of peripheral 5-HT3 receptors increases plasma levels of prolactin but not renin. In humans, the effect of 5-HT-releasing drugs and 5-HT agonists on plasma prolactin concentrations has been studied to a greater extent than effects on most other hormones. In contrast, the renin response to 5-HT agonists and 5-HT releasers has not been well characterized in humans. Because of the important role of the renin-angiotensin system in cardiovascular regulation, studies on the serotonergic regulation of renin release in humans could increase our understanding of cardiovascular disorders associated with altered serotonergic function. Examples include anxiety and consequences of cocaine abuse. In conclusion, comparing the serotonergic regulation of prolactin and renin secretion indicates similarities that might shed light on common brain mechanisms that regulate neuroendocrine function.

UI MeSH Term Description Entries
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D017366 Serotonin Receptor Agonists Endogenous compounds and drugs that bind to and activate SEROTONIN RECEPTORS. Many serotonin receptor agonists are used as ANTIDEPRESSANTS; ANXIOLYTICS; and in the treatment of MIGRAINE DISORDERS. 5-HT Agonists,5-Hydroxytryptamine Agonists,Serotonin Agonists,5-HT Agonist,5-Hydroxytrytamine Agonist,Receptor Agonists, Serotonin,Serotonergic Agonist,Serotonergic Agonists,Serotonin Agonist,Serotonin Receptor Agonist,5 HT Agonist,5 HT Agonists,5 Hydroxytryptamine Agonists,5 Hydroxytrytamine Agonist,Agonist, 5-HT,Agonist, 5-Hydroxytrytamine,Agonist, Serotonergic,Agonist, Serotonin,Agonist, Serotonin Receptor,Agonists, 5-HT,Agonists, 5-Hydroxytryptamine,Agonists, Serotonergic,Agonists, Serotonin,Agonists, Serotonin Receptor,Receptor Agonist, Serotonin

Related Publications

L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
October 1985, Acta endocrinologica,
L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
March 1987, The Journal of pharmacology and experimental therapeutics,
L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
July 1987, The American journal of physiology,
L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
November 1996, Neuroendocrinology,
L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
January 2019, Acta physiologica (Oxford, England),
L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
January 1971, Patologicheskaia fiziologiia i eksperimental'naia terapiia,
L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
November 1967, Deutsche medizinische Wochenschrift (1946),
L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
January 1977, Contributions to nephrology,
L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
September 1990, Minerva medica,
L D Van de Kar, and P A Rittenhouse, and Q Li, and A D Levy
January 1986, Psychoneuroendocrinology,
Copied contents to your clipboard!