Calcium-induced calcium release in rat sensory neurons. 1995

A Shmigol, and A Verkhratsky, and G Isenberg
Bogomoletz Institute of Physiology, Kiev-24, Ukraine.

1. In isolated dorsal root ganglion cells (DRG neurons), changes in the concentration of global cytosolic Ca2+ (delta [Ca2+]c) were measured by the fluorescence of K5-indo-1. Depolarizations from -60 to 0 mV (500 ms) and Ca2+ influx through Ca2+ channels (ICa) increased [Ca2+]c by 480 +/- 113 nM, the peak occurring 542 +/- 76 ms (mean +/- S.E.M.) after repolarization. 2. Ryanodine (10 microM) reduced depolarization-induced delta [Ca2+]c by up to 80% and blocked delta [Ca2+]c induced by 20 mM caffeine. 3. Peak delta [Ca2+]c and peak ICa followed a similar bell-shaped voltage dependence. Removal of extracellular Ca2+ abolished depolarization-induced delta [Ca2+]c; its elevation from 2 to 8 mM increased peak ICa by 30% and delta [Ca2+]c by 108%. 4. Ca2+ influx at 0 mV was graded by pulse durations between 20 and 500 ms. Up to 200 ms, delta [Ca2+]c increased linearly with Ca2+ influx. Depolarizations longer than 200 ms induced a supralinear increase in delta [Ca2+]c that was abolished by caffeine (20 mM). 5. The supralinear increase in delta [Ca2+]c and the caffeine-induced delta [Ca2+]c were measured only in thirteen of nineteen DRG neurons; in the other six of nineteen cells both properties were absent. The results suggest that Ca(2+)-induced Ca2+ release (CICR) is expressed differently in different populations of DRG neurons. 6. A single action potential did not significantly increase [Ca2+]c. Trains of stimuli (20 Hz) induced delta [Ca2+]c that linearly increased with the number of action potentials. Delta [Ca2+]c due to 100 action potentials had a significant ryanodine-sensitive component. 7. It is discussed that CICR can contribute to the depolarization-induced [Ca2+]c, provided the Ca2+ influx lasts for a certain minimum period of time.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000697 Central Nervous System Stimulants A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here. Analeptic,Analeptic Agent,Analeptic Drug,Analeptics,CNS Stimulant,CNS Stimulants,Central Nervous System Stimulant,Central Stimulant,Analeptic Agents,Analeptic Drugs,Central Stimulants,Agent, Analeptic,Agents, Analeptic,Drug, Analeptic,Drugs, Analeptic,Stimulant, CNS,Stimulant, Central,Stimulants, CNS,Stimulants, Central
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.

Related Publications

A Shmigol, and A Verkhratsky, and G Isenberg
September 2006, Journal of neurophysiology,
A Shmigol, and A Verkhratsky, and G Isenberg
February 2003, Archives of biochemistry and biophysics,
A Shmigol, and A Verkhratsky, and G Isenberg
June 2003, The European journal of neuroscience,
A Shmigol, and A Verkhratsky, and G Isenberg
January 2004, Neuroscience letters,
A Shmigol, and A Verkhratsky, and G Isenberg
November 2010, Journal of neuroscience research,
A Shmigol, and A Verkhratsky, and G Isenberg
February 2002, The European journal of neuroscience,
A Shmigol, and A Verkhratsky, and G Isenberg
February 2020, Brain research,
A Shmigol, and A Verkhratsky, and G Isenberg
April 2004, The Journal of biological chemistry,
A Shmigol, and A Verkhratsky, and G Isenberg
October 1991, Journal of neuroscience research,
Copied contents to your clipboard!