Detection of Cl- binding to band 3 by double-quantum-filtered 35Cl nuclear magnetic resonance. 1996

D Liu, and P A Knauf, and S D Kennedy
Department of Biophysics, University of Rochester, New York 14642, USA.

We have applied double-quantum-filtered (DQF) NMR of 35Cl to study binding of Cl- to external sites on intact red blood cells, including the outward-facing anion transport sites of band 3, an integral membrane protein. A DQF 35Cl NMR signal was observed in cell suspensions containing 150 mM KCl, but the DQF signal can be totally eliminated by adding 500 microM 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS), an inhibitor that interferes with Cl- binding to the band 3 transport site. Therefore, it seems that only the binding of Cl- to transport sites of band 3 can give rise to a 35Cl DQF signal from red blood cell suspensions. In accordance with this concept, analysis of the single quantum free induction decay (FID) revealed that signals from buffer and DNDS-treated cells were fitted with a single exponential function, whereas the FID signals of untreated control cells were biexponential. The DQF signal remained after the cells were treated with eosin-5-maleimide (EM), a noncompetitive inhibitor of chloride exchange. This result supports previous reports that EM does not block the external chloride binding site. The band 3-dependent DQF signal is shown to be caused at least in part by nonisotropic motions of Cl- in the transport site, resulting in incompletely averaged quadrupolar couplings.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D002713 Chlorine An element with atomic symbol Cl, atomic number 17, and atomic weight 35, and member of the halogen family. Chlorine Gas,Chlorine-35,Cl2 Gas,Chlorine 35,Gas, Chlorine,Gas, Cl2
D004801 Eosine Yellowish-(YS) A versatile red dye used in cosmetics, pharmaceuticals, textiles, etc., and as tissue stain, vital stain, and counterstain with HEMATOXYLIN. It is also used in special culture media. Eosin,Eosine Yellowish,Tetrabromofluorescein,Acid Red 87,C.I. Acid Red 87,Eosin (yellowish) (free acid),Eosin Y,Eosine,Eosine Yellowish-(YS), Dipotassium Salt,Eosine Yellowish-(YS), Potassium, Sodium Salt
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D013267 Stilbenes Organic compounds that contain 1,2-diphenylethylene as a functional group. Stilbene,Stilbene Derivative,Stilbene Derivatives,Stilbenoid,Stilbenoids,Derivative, Stilbene,Derivatives, Stilbene
D017136 Ion Transport The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions. Antiport,Ion Cotransport,Ion Exchange, Intracellular,Symport,Uniport,Active Ion Transport,Facilitated Ion Transport,Passive Ion Transport,Cotransport, Ion,Exchange, Intracellular Ion,Intracellular Ion Exchange,Ion Transport, Active,Ion Transport, Facilitated,Ion Transport, Passive,Transport, Active Ion,Transport, Ion

Related Publications

D Liu, and P A Knauf, and S D Kennedy
September 1976, Archives of biochemistry and biophysics,
D Liu, and P A Knauf, and S D Kennedy
May 1971, Analytical biochemistry,
D Liu, and P A Knauf, and S D Kennedy
December 2006, Journal of magnetic resonance (San Diego, Calif. : 1997),
D Liu, and P A Knauf, and S D Kennedy
December 2007, Magnetic resonance in chemistry : MRC,
D Liu, and P A Knauf, and S D Kennedy
February 2015, Magnetic resonance in medicine,
D Liu, and P A Knauf, and S D Kennedy
June 1974, Archives of biochemistry and biophysics,
D Liu, and P A Knauf, and S D Kennedy
July 1980, Archives of biochemistry and biophysics,
D Liu, and P A Knauf, and S D Kennedy
July 2023, The Journal of chemical physics,
D Liu, and P A Knauf, and S D Kennedy
May 1984, The Journal of biological chemistry,
D Liu, and P A Knauf, and S D Kennedy
December 1975, Biochemistry,
Copied contents to your clipboard!