Disruption of microfilaments alters laminin synthesis but not laminin trafficking in NHEK in vitro. 1996

J R Cook, and R G Van Buskirk
Department of Biological Sciences, State University of New York, Binghamton 13902-6000, USA.

Laminin synthesis and deposition are concomitant with the development of a basal lamina between the human epidermis and the underlying dermis. One of the challenges in tissue engineering of human epidermal models is to develop substrates and conditions that encourage the development of a basement membrane. The purpose of this study was to determine if actin filaments and/or microtubules are involved in the synthesis/secretion of laminin by normal human epidermal keratinocytes (NHEK) in vitro. NHEK synthesize and secrete laminin subunits B1, B2, and M but little, if any, of laminin subunit A. Data indicate that disruption of microfilaments by the destabilizing agent, cytochalasin D, had no apparent effect on the relative synthesis rates of most cytosolic proteins as revealed by one-dimensional sodium dodecyl sulfate (SDS) gel electrophoresis. This drug, however, increased laminin B2 synthesis several fold over untreated controls. This enhanced synthetic rate was independent of the type of collagen matrix on which the NHEK were grown. Similar increases in synthesis of the M and B1 laminin chains were not observed. To determine if this increase in synthesis lead to increases in laminin B2 secretion, laminin B2 was immunoprecipitated from both the apical and basal domains of NHEK cells grown on microporous membranes. While more laminin B1, B2, and M were secreted basally than apically, an observation consistent with laminin's role in basal lamina formation, cytochalasin D had no apparent effect on either basal or apical laminin B2 secretion. Experiments with the microtubule destabilizer, nocodazole, showed no similar effects on laminin synthesis and/or secretion. We conclude that (a) disruption of the actin network in NHEK selectively increases the synthesis of laminin B2, (b) the secretion of laminin B2 from NHEK cells is not governed by either the microfilamentous cytoskeleton or the amount of laminin synthesized by NHEK, and (c) disruption of the microtubular network does not alter laminin synthesis or secretion.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D015638 Cytochalasin D A fungal metabolite that blocks cytoplasmic cleavage by blocking formation of contractile microfilament structures resulting in multinucleated cell formation, reversible inhibition of cell movement, and the induction of cellular extrusion. Additional reported effects include the inhibition of actin polymerization, DNA synthesis, sperm motility, glucose transport, thyroid secretion, and growth hormone release.
D015739 Nocodazole Nocodazole is an antineoplastic agent which exerts its effect by depolymerizing microtubules. NSC-238159,Oncodazole,R-17934,R17934,NSC 238159,NSC238159,R 17934

Related Publications

J R Cook, and R G Van Buskirk
January 1987, Developmental and comparative immunology,
J R Cook, and R G Van Buskirk
October 2004, Journal of cell science,
J R Cook, and R G Van Buskirk
November 1995, Cellular immunology,
J R Cook, and R G Van Buskirk
May 1983, The Journal of biological chemistry,
J R Cook, and R G Van Buskirk
May 2009, Clinical cancer research : an official journal of the American Association for Cancer Research,
Copied contents to your clipboard!