Effect of MK-801 at the human alpha 7 nicotinic acetylcholine receptor. 1996

C A Briggs, and D G McKenna
Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064, USA.

Responses of the human alpha 7 nicotinic acetylcholine receptor (alpha 7 nAChR) expressed in Xenopus laevis oocytes were quantified in the presence of barium (10 mM) to prevent secondary activation of Ca(2+)-dependent Cl- currents and atropine (2 microM) to block endogenous muscarinic receptors. Acetylcholine (ACh) elicited responses with EC50 values of 177 +/- 32 microM to 272 +/- 26 microM in different experiments. Responses to ACh (200 microM) were blocked by the nAChR antagonists alpha-bungarotoxin (IC50 = 0.54 +/- 0.04 nM), methyllycaconitine (IC50 = 0.64 +/- 0.08 nM) and mecamylamine (IC50 = 1.8 +/- 02 microM). Additionally, MK-801, a non-competitive blocker of N-methyl-D-aspartate (NMDA) sensitive glutamate receptor channels, inhibited the human alpha 7 nAChR. This effect was not stereoselective; the IC50 for (+)-MK-801 was 15 +/- 3 microM while that for (-)-MK-801 was 14 +/- 3 microM. The inhibition by MK-801, in contrast to methyllycaconitine, was dependent upon cell potential, consistent with a mechanism involving channel blockade. The inhibition by MK-801 reversed slowly (time constant approximately 20 min) compared to that by methyllycaconitine (100% recovery within 10 min). However, MK-801 did not appear to be trapped in the channel because the recovery from inhibition showed little dependence upon stimulation rate or cell potential. Thus, MK-801 acted as a non-stereoselective alpha 7 nAChR inhibitor that was only about 8-fold less potent than the nAChR antagonist mecamylamine and probably acted through channel blockade.

UI MeSH Term Description Entries
D008464 Mecamylamine A nicotinic antagonist that is well absorbed from the gastrointestinal tract and crosses the blood-brain barrier. Mecamylamine has been used as a ganglionic blocker in treating hypertension, but, like most ganglionic blockers, is more often used now as a research tool.
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D005069 Evaluation Studies as Topic Works about studies that determine the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. Critique,Evaluation Indexes,Evaluation Methodology,Evaluation Report,Evaluation Research,Methodology, Evaluation,Pre-Post Tests,Qualitative Evaluation,Quantitative Evaluation,Theoretical Effectiveness,Use-Effectiveness,Critiques,Effectiveness, Theoretical,Evaluation Methodologies,Evaluation Reports,Evaluation, Qualitative,Evaluation, Quantitative,Evaluations, Qualitative,Evaluations, Quantitative,Indexes, Evaluation,Methodologies, Evaluation,Pre Post Tests,Pre-Post Test,Qualitative Evaluations,Quantitative Evaluations,Report, Evaluation,Reports, Evaluation,Research, Evaluation,Test, Pre-Post,Tests, Pre-Post,Use Effectiveness
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000157 Aconitine A C19 norditerpenoid alkaloid (DITERPENES) from the root of ACONITUM; DELPHINIUM and larkspurs. It activates VOLTAGE-GATED SODIUM CHANNELS. It has been used to induce ARRHYTHMIAS in experimental animals and it has anti-inflammatory and anti-neuralgic properties. Acetylbenzoylaconine,Aconitane-3,8,13,14,15-pentol, 20-ethyl-1,6,16-trimethoxy-4-(methoxymethyl)-, 8-acetate 14-benzoate, (1alpha,3alpha,6alpha,14alpha,15alpha,16beta)-,Acetylbenzoyl-aconine,Acetylbenzoyl aconine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

C A Briggs, and D G McKenna
March 1991, Synapse (New York, N.Y.),
C A Briggs, and D G McKenna
May 1989, European journal of pharmacology,
C A Briggs, and D G McKenna
July 1990, The Journal of pharmacology and experimental therapeutics,
C A Briggs, and D G McKenna
September 2009, Life sciences,
C A Briggs, and D G McKenna
August 1995, European journal of pharmacology,
C A Briggs, and D G McKenna
January 2024, CNS & neurological disorders drug targets,
C A Briggs, and D G McKenna
December 2000, Proceedings of the National Academy of Sciences of the United States of America,
C A Briggs, and D G McKenna
October 2004, Brain research,
C A Briggs, and D G McKenna
January 2019, Neuroscience letters,
Copied contents to your clipboard!