4-Hydroxybutyryl-CoA dehydratase from Clostridium aminobutyricum: characterization of FAD and iron-sulfur clusters involved in an overall non-redox reaction. 1996

U Müh, and I Cinkaya, and S P Albracht, and W Buckel
Laboratorium für Mikrobiologie am Fachbereich Biologie der Philipps Universität Marburg, Germany.

4-Hydroxybutyryl-CoA dehydratase catalyzes the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA, which involves cleavage of an unactivated beta-C-H bond. The enzyme also catalyzes the apparently irreversible isomerization of vinylacetyl-CoA to crotonyl-CoA. Addition of crotonyl-CoA to the dehydratase, which contains FAD as well as non-heme iron and acid labile sulfur, led to a decrease of the flavin absorbance at 438 nm and an increase in the region from 500 to 800 nm. The protein-bound FAD was easily reduced to the semiquinone (redox equilibration within seconds) and only slowly to the hydroquinone (redox equilibration minutes to hours): the redox potentials were not unusual for flavoproteins (Eox/sq = -140 +/- 15 mV and Esq/red = -240 +/- 15 mV; pH 7.0, 25 degrees C). There was no equilibration of electrons between the flavin and the Fe-S cluster, which was difficult to reduce. After extensive photoreduction, an EPR signal indicative of a [4Fe-4S]+ cluster was detected (g-values: 2.037, 1.895, 1.844). Upon exposure to air at 0 degrees C, the enzyme lost dehydration activity completely within 40 min, but isomerase activity dropped to about 40% of the initial value and persisted for more than a day. The properties of the protein-bound FAD are consistent with a mechanism involving transient one-electron oxidation of the substrate to activate the the beta-C-H bond. The putative [4Fe-4S]2+ cluster could serve a structural role and/or as Lewis acid facilitating the leaving of the hydroxyl group.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D003013 Clostridium A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
D004227 Dithionite Dithionite. The dithionous acid ion and its salts. Hyposulfite,Sodium Dithionite,Dithionite, Sodium
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide

Related Publications

U Müh, and I Cinkaya, and S P Albracht, and W Buckel
July 1990, FEMS microbiology letters,
U Müh, and I Cinkaya, and S P Albracht, and W Buckel
September 1997, European journal of biochemistry,
U Müh, and I Cinkaya, and S P Albracht, and W Buckel
February 2015, Applied and environmental microbiology,
U Müh, and I Cinkaya, and S P Albracht, and W Buckel
December 2009, Biological chemistry,
U Müh, and I Cinkaya, and S P Albracht, and W Buckel
May 2004, Chemical communications (Cambridge, England),
U Müh, and I Cinkaya, and S P Albracht, and W Buckel
March 2012, Archives of microbiology,
U Müh, and I Cinkaya, and S P Albracht, and W Buckel
June 1992, European journal of biochemistry,
Copied contents to your clipboard!