The beneficial effects of atrial natriuretic peptide on arrhythmias and myocardial high-energy phosphates after reperfusion. 1996

Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
Second Department of Internal Medicine, Tokyo Medical College, Japan.

OBJECTIVE The aim of this investigation was to test whether the administration of atrial natriuretic peptide (ANP) has cardioprotective effects against ischaemic and reperfusion injury. METHODS Thoracotomized dogs underwent a 30 min left circumflex coronary artery occlusion and 60 min of reperfusion (control group; n = 16). The ANP group (n = 9) received a 20 micrograms bolus injection of synthetic alpha human ANP (SUN 4936) followed by infusion at a dose of 0.1 microgram/kg/min from the beginning of coronary occlusion to the end of the procedure. RESULTS Administration of exogenous ANP increased plasma ANP immediately and maintained levels at 3000 pg/ml, resulting in an 8-fold increase in plasma cyclic guanosine monophosphate (cGMP) levels. Plasma ANP and plasma cGMP levels did not change at all in controls. There were no significant differences in haemodynamic parameters during ischaemia and reperfusion between the groups. In the ANP group, the prevalence and frequency of ventricular extrasystoles within 10 min after reperfusion decreased markedly [ANP 22% vs. control 100%, P < 0.01, and ANP 1 (1) vs. control 92 (50), P < 0.05, respectively]. No dog in the ANP group had ventricular fibrillation (VF), but the incidence of VF was not statistically significant between the groups [ANP 0% vs. control 25%]. ATP content in the inner layers of the ischaemic myocardium in the ANP group was higher than in controls (P < 0.05) [1.92 (0.28) vs. 1.18 (0.13) mumol/g wet weight]. There was no significant difference in the content of myocardial tissue angiotensin II between the groups. CONCLUSIONS These data show that the infusion of ANP has cardioprotective effects on myocardial ischaemia and reperfusion in this model. These beneficial effects are probably due to direct effects through cGMP rather than haemodynamic changes.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001145 Arrhythmias, Cardiac Any disturbances of the normal rhythmic beating of the heart or MYOCARDIAL CONTRACTION. Cardiac arrhythmias can be classified by the abnormalities in HEART RATE, disorders of electrical impulse generation, or impulse conduction. Arrhythmia,Arrythmia,Cardiac Arrhythmia,Cardiac Arrhythmias,Cardiac Dysrhythmia,Arrhythmia, Cardiac,Dysrhythmia, Cardiac
D015428 Myocardial Reperfusion Injury Damage to the MYOCARDIUM resulting from MYOCARDIAL REPERFUSION (restoration of blood flow to ischemic areas of the HEART.) Reperfusion takes place when there is spontaneous thrombolysis, THROMBOLYTIC THERAPY, collateral flow from other coronary vascular beds, or reversal of vasospasm. Reperfusion Injury, Myocardial,Injury, Myocardial Reperfusion,Myocardial Ischemic Reperfusion Injury,Injuries, Myocardial Reperfusion,Myocardial Reperfusion Injuries,Reperfusion Injuries, Myocardial

Related Publications

Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
September 1989, American heart journal,
Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
June 1990, American heart journal,
Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
January 1991, ASAIO transactions,
Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
March 1990, American journal of hypertension,
Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
September 1979, Canadian journal of physiology and pharmacology,
Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
December 1994, Journal of molecular and cellular cardiology,
Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
April 1988, Biochemical medicine and metabolic biology,
Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
January 1993, Circulation,
Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
April 2006, Zhonghua er bi yan hou tou jing wai ke za zhi = Chinese journal of otorhinolaryngology head and neck surgery,
Y Takata, and Y Hirayama, and S Kiyomi, and T Ogawa, and K Iga, and T Ishii, and Y Nagai, and C Ibukiyama
April 2004, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!