Understanding how cystic fibrosis mutations cause a loss of Cl- channel function. 1996

D N Sheppard, and L S Ostedgaard
Department of Medicine, University of Edinburgh, Western General Hospital, UK. D.N.Sheppard@ed.ac.uk

Defective epithelial Cl- secretion is the hallmark of the lethal genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a regulated Cl- channel. Since the identification of the single gene encoding CFTR, several hundred disease-causing mutations, associated with a wide variety of clinical phenotypes, have been reported. To understand the relationship between genotype and clinical phenotype, researchers have investigated how mutations in CFTR disrupt its function. Here, we review the recent progress in understanding how CF-associated mutations in CFTR produce defective Cl- channels, and discuss the implications of this knowledge for the development of therapy for CF.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003550 Cystic Fibrosis An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION. Mucoviscidosis,Cystic Fibrosis of Pancreas,Fibrocystic Disease of Pancreas,Pancreatic Cystic Fibrosis,Pulmonary Cystic Fibrosis,Cystic Fibrosis, Pancreatic,Cystic Fibrosis, Pulmonary,Fibrosis, Cystic,Pancreas Fibrocystic Disease,Pancreas Fibrocystic Diseases
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings
D019005 Cystic Fibrosis Transmembrane Conductance Regulator A chloride channel that regulates secretion in many exocrine tissues. Abnormalities in the CFTR gene have been shown to cause cystic fibrosis. (Hum Genet 1994;93(4):364-8) CFTR Protein,Chloride channels, ATP-gated CFTR,Chloride channels, ATP gated CFTR,Protein, CFTR

Related Publications

D N Sheppard, and L S Ostedgaard
December 1995, Current biology : CB,
D N Sheppard, and L S Ostedgaard
July 2014, The international journal of biochemistry & cell biology,
D N Sheppard, and L S Ostedgaard
April 2011, Nature,
D N Sheppard, and L S Ostedgaard
February 2009, Cellular microbiology,
D N Sheppard, and L S Ostedgaard
November 1987, The Journal of biological chemistry,
D N Sheppard, and L S Ostedgaard
February 2005, The Journal of biological chemistry,
D N Sheppard, and L S Ostedgaard
March 1998, The American journal of physiology,
D N Sheppard, and L S Ostedgaard
October 1991, The Journal of biological chemistry,
D N Sheppard, and L S Ostedgaard
November 2003, The Journal of general physiology,
Copied contents to your clipboard!