Studies on the in vitro phosphorylation of HSSB-p34 and -p107 by cyclin-dependent kinases. Cyclin-substrate interactions dictate the efficiency of phosphorylation. 1996

E Gibbs, and Z Q Pan, and H Niu, and J Hurwitz
Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.

Cyclin-dependent kinases (Cdks) are required for cell cycle progression. Two potentially significant Cdk substrates in human cells are the human single-stranded binding protein (HSSB or RPA), which plays an essential role in DNA replication, repair, and recombination, and the tumor suppressor p107 which acts to negatively regulate cell growth. In this report we describe the in vitro phosphorylation of these two proteins by Cdks in an attempt to understand how cyclin-substrate interactions direct phosphorylation efficiencies. We show that cyclin A-Cdk2 efficiently phosphorylates the p34 subunit of HSSB (HSSB-p34) alone or as a part of the heterotrimeric complex. In contrast, cyclin E-Cdk2 that is active in phosphorylating histone H1, does not support the phosphorylation of the p34 subunit of HSSB. We provide evidence that this differential phosphorylation results from a specific interaction between HSSB-p34 and cyclin A, but not cyclin E. Thus the observed cell cycle-dependent phosphorylation of HSSB-p34 at the G1 to S transition is most likely catalyzed by cyclin A-Cdk2 initiated by the direct interaction between cyclin A and the HSSB-p34 subunit. These studies are consistent with our previous observation that p107, which directly binds cyclin A, is efficiently phosphorylated by cyclin A-Cdk2 but not cyclin B-associated kinases. Here we further demonstrate that cyclin A only complexes with p107 in its unphosphorylated form. These data suggest a catalytic mechanism by which Cdk acts: substrate targeting by a cyclin-substrate interaction followed by dissociation of the Cdk upon phosphate incorporation allowing the Cdk to become available for the next cycle of phosphorylation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D016203 CDC2 Protein Kinase Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated. Cdk1 Protein Kinase,Cyclin-Dependent Kinase 1,Histone Kinase p34(cdc2),Protein p34cdc2,p34cdc2 Protein,cdc2+ Protein,cdk1 Kinase,Cyclin Dependent Kinase 1,Protein Kinase, CDC2,Protein Kinase, Cdk1,p34cdc2, Protein
D016213 Cyclins A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. They generally function as ENZYME ACTIVATORS that drive the CELL CYCLE through transitions between phases. A subset of cyclins may also function as transcriptional regulators. Cyclin

Related Publications

E Gibbs, and Z Q Pan, and H Niu, and J Hurwitz
January 2006, Cytokine & growth factor reviews,
E Gibbs, and Z Q Pan, and H Niu, and J Hurwitz
September 1993, Trends in cell biology,
E Gibbs, and Z Q Pan, and H Niu, and J Hurwitz
April 2002, Molecular and cellular biology,
E Gibbs, and Z Q Pan, and H Niu, and J Hurwitz
December 1999, Current opinion in structural biology,
E Gibbs, and Z Q Pan, and H Niu, and J Hurwitz
August 1997, The Journal of biological chemistry,
E Gibbs, and Z Q Pan, and H Niu, and J Hurwitz
January 1998, Methods in molecular biology (Clifton, N.J.),
E Gibbs, and Z Q Pan, and H Niu, and J Hurwitz
July 1994, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!