Determination of carbohydrates by high-performance capillary electrophoresis with indirect absorbance detection. 1996

Y H Lee, and T I Lin
Department of Chemistry, National Taiwan University, Taipei, Taiwan.

High-performance capillary electrophoresis (HPCE) methods with indirect absorbance detection (IAD) have been developed for the determination of carbohydrates, e.g. glucose, fructose, rhamnose, ribose, maltose, lactose, sucrose and gluconic acid. The suitability and performance of six background electrolytes (BGEs), i.e., 1-naphthylacetic acid (NAA), 2-naphthalenesulfonic acid, 1,3-dihydroxynaphthalene, phenylacetic acid, p-cresol and sorbic acid, for the IAD method were investigated. The effects of the concentration of the BGE, pH and temperature on the CE separation of these analytes were evaluated. NAA was found to be best suited as the carrier buffer and background absorbance provider for the detection at 222 nm. The optimal CE performance was found when employing 2 mM NAA, pH 12.2, at 25 degrees C. In comparison with the previous method that used sorbate as the BGE, the present method utilizing NAA shows a 3-6 fold increase in the separation efficiency and a 2-5 fold improvement in the detection limit. The calculated number of theoretical plates is in the range of 1.0-3.0 x 10(5). The precision of the present method for most sugar analytes, measured by the coefficient of variation (C.V.), typically, is less than 1% for the migration time and better than 3% for the peak height and peak area (n = 6). The detection limit is about 0.1 mM for all analytes, except for ribose for which it is about 0.2 mM. This new method is fast, accurate and can be readily applied to real biological samples for quantitative determination of selected carbohydrates.

UI MeSH Term Description Entries
D009005 Monosaccharides Single chain carbohydrates that are the most basic units of CARBOHYDRATES. They are typically colorless crystalline substances with a sweet taste and have the same general formula CnH2nOn. Monosaccharide,Simple Sugar,Simple Sugars,Sugar, Simple,Sugars, Simple
D002138 Calibration Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output. Calibrations
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D004573 Electrolytes Substances that dissociate into two or more ions, to some extent, in water. Solutions of electrolytes thus conduct an electric current and can be decomposed by it (ELECTROLYSIS). (Grant & Hackh's Chemical Dictionary, 5th ed) Electrolyte
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016014 Linear Models Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression. Linear Regression,Log-Linear Models,Models, Linear,Linear Model,Linear Regressions,Log Linear Models,Log-Linear Model,Model, Linear,Model, Log-Linear,Models, Log-Linear,Regression, Linear,Regressions, Linear

Related Publications

Y H Lee, and T I Lin
July 1995, Journal of chromatography. B, Biomedical applications,
Y H Lee, and T I Lin
October 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Copied contents to your clipboard!