Recent insights into the regulation of cerebral circulation. 1996

J E Brian, and F M Faraci, and D D Heistad
Department of Anesthesia, University of Iowa College of Medicine, Iowa City 52242, USA.

1. Mechanisms that regulate the cerebral circulation have been intensively investigated in recent years. The role of several vasodilator mechanisms has been examined in the cerebral circulation, including nitric oxide (NO), trigeminal peptides and potassium channels, as well as the potent vasoconstrictor endothelin. These mediators appear to play a role in physiological and pathophysiological responses of the cerebral circulation. In the present review, we will focus on some recent developments in each of these areas. 2. Nitric oxide is an important regulator of cerebral vascular tone. Tonic production of NO maintains the cerebral vasculature in a dilated state. NO appears to be an important vasodilator during activation of neurons by excitatory amino acids, somatosensory stimulation and cortical spreading depression. Tonic production of NO appears to be critical in vasodilatation during hypercapnia, although NO may not directly mediate vasodilatation. NO produced by immunological NO-synthase appears to be important in dilatation following exposure to bacterial endotoxin. 3. Calcitonin gene-related peptide (CGRP), released from trigeminal perivascular sensory nerves in the brain, is an extremely potent dilator of brain vessels. CGRP may limit noradrenaline-induced constriction of cerebral vessels and contribute to dilatation during hypotension (autoregulation), reactive hyperaemia, seizures and cortical spreading depression. 4. Activation of potassium channels leads to hyperpolarization of cerebral vascular smooth muscle and appears to be a major mechanism for dilatation of cerebral arteries. Agents that increase the intracellular concentration of cyclic 3' 5'-adenosine monophosphate (cAMP) produce vasodilatation in part by activation of large conductance calcium-activated potassium channels (BKCa) and ATP-sensitive potassium channels (KATP). Activation of both KATP and BKCa channels also appears to contribute to vasodilatation during hypoxia. In contrast to KATP channels, BKCa channels appears to be active under basal conditions, contributing to tonic dilatation of cerebral blood vessels. 5. Endothelin is produced in the brain, but its role in the physiological regulation of cerebral blood flow is not known. Endothelin may contribute to the spasm of cerebral arteries following subarachnoid haemorrhage.

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015740 Calcitonin Gene-Related Peptide A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator. Calcitonin Gene-Related Peptide I,Calcitonin Gene-Related Peptide II,alpha-CGRP,alpha-Calcitonin Gene-Related Peptide,beta-CGRP,beta-Calcitonin Gene-Related Peptide,Calcitonin Gene Related Peptide,Calcitonin Gene Related Peptide I,Calcitonin Gene Related Peptide II,Gene-Related Peptide, Calcitonin,alpha Calcitonin Gene Related Peptide,beta Calcitonin Gene Related Peptide
D016232 Endothelins 21-Amino-acid peptides produced by vascular endothelial cells and functioning as potent vasoconstrictors. The endothelin family consists of three members, ENDOTHELIN-1; ENDOTHELIN-2; and ENDOTHELIN-3. All three peptides contain 21 amino acids, but vary in amino acid composition. The three peptides produce vasoconstrictor and pressor responses in various parts of the body. However, the quantitative profiles of the pharmacological activities are considerably different among the three isopeptides. Endothelium-Derived Vasoconstrictor Factors,Endothelin,Vasoconstrictor Factors, Endothelium-Derived

Related Publications

J E Brian, and F M Faraci, and D D Heistad
March 1992, Circulation,
J E Brian, and F M Faraci, and D D Heistad
October 2011, Autonomic neuroscience : basic & clinical,
J E Brian, and F M Faraci, and D D Heistad
March 2010, The FEBS journal,
J E Brian, and F M Faraci, and D D Heistad
October 2005, Motor control,
J E Brian, and F M Faraci, and D D Heistad
May 2020, Arteriosclerosis, thrombosis, and vascular biology,
J E Brian, and F M Faraci, and D D Heistad
August 2009, Cellular and molecular life sciences : CMLS,
J E Brian, and F M Faraci, and D D Heistad
October 1991, The American journal of physiology,
J E Brian, and F M Faraci, and D D Heistad
March 2010, The FEBS journal,
J E Brian, and F M Faraci, and D D Heistad
July 1969, Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften,
J E Brian, and F M Faraci, and D D Heistad
January 1948, Harvey lectures,
Copied contents to your clipboard!