A Rho-dependent transcription termination site regulated by bacteriophage P4 RNA immunity factor. 1996

F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Italy.

The genes required for replication of the temperate bacteriophage P4, which are coded by the phage left operon, are expressed from a constitutive promoter (PLE). In the lysogenic state, repression of the P4 replication genes is achieved by premature transcription termination. The leader region of the left operon encodes all the genetic determinants required for prophage immunity, namely: (i) the P4 immunity factor, a short, stable RNA (CI RNA) that is generated by processing of the leader transcript; (ii) two specific target sequences that exhibit complementarity with the CI RNA. RNA-RNA interactions between the CI RNA and the target sites on the mRNA leader region are essential for transcription termination. To understand how transcription termination is elicited by the P4 immunity mechanism, it is relevant to identify the transcription termination site. This, however, could not be directly inferred from the 3'-end of the transcription products because of the extensive and complex processing and degradation of the leader RNA. In this work, by making use of a tRNA gene as a reporter, we identify the termination site of the immunity transcripts (timm). This is a Rho-dependent terminator located within the first translated gene of the left operon and is regulated by P4 immunity. Analysis of the P4 transcription pattern in Escherichia coli rho mutants suggests that termination at timm may also be important for the efficient processing of the CI RNA.

UI MeSH Term Description Entries
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012234 Rho Factor A protein which effects termination of RNA synthesis during the genetic transcription process by dissociating the ternary transcription complex RNA;-RNA POLYMERASE DNA at the termination of a gene. E Coli Transcription Termination Factor,Factor, Rho
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013728 Terminator Regions, Genetic DNA sequences recognized as signals to end GENETIC TRANSCRIPTION. Terminator Sequence,Transcriptional Terminator Regions,Terminator Regions,Genetic Terminator Region,Genetic Terminator Regions,Region, Genetic Terminator,Region, Terminator,Region, Transcriptional Terminator,Regions, Genetic Terminator,Regions, Terminator,Regions, Transcriptional Terminator,Sequence, Terminator,Sequences, Terminator,Terminator Region,Terminator Region, Genetic,Terminator Region, Transcriptional,Terminator Regions, Transcriptional,Terminator Sequences,Transcriptional Terminator Region
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
September 2006, The Journal of biological chemistry,
F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
November 1991, Journal of bacteriology,
F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
April 1980, Journal of molecular biology,
F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
November 1992, Molecular microbiology,
F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
March 1995, Journal of bacteriology,
F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
August 2013, Nucleic acids research,
F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
June 1986, Journal of molecular biology,
F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
January 1984, Journal of molecular biology,
F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
March 1990, The Journal of biological chemistry,
F Briani, and S Zangrossi, and D Ghisotti, and G Dehò
March 2007, The Journal of general virology,
Copied contents to your clipboard!