Postnatal development of alpha- and gamma-peroneal motoneurons in kittens: an ultrastructural study. 1996

M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
Laboratoire de Physiologie et Biologie de la Motricité, CNRS URA 1448, Université René Descartes, UFR Biomédicale, Paris, France.

Motoneurons innervating the peroneus brevis muscle of 1 week- and 3 week-old kittens were retrogradely labelled by HRP and examined by electron microscopy. At 1 week the distribution of mean cell body diameters was unimodal. Consequently alpha- and gamma-motoneurons could not be identified by their size. The aim of this study was to see whether the alpha- and gamma-motoneurons of kittens could be identified using the combination of ultrastructural criteria previously defined in the adult cat. Using these three criteria it was not possible to distinguish all the motoneurons as either alpha- or gamma in the kitten and a fourth criterion (frequency of F bouton profiles) was added to aid identification. However, with these four criteria, at 1 week six of 21 motoneurons and at 3 weeks two of 18 could still not be clearly identified as alpha or gamma (four were tentatively considered to be gamma, and four could not be identified). The maturation of alpha-motoneurons between 1 week and the adult was accompanied by an increase in somatic membrane area and a significant decrease in the somatic packing density of F boutons. On gamma-motoneurons there was a decrease in the somatic packing density of F boutons between 1 and 3 weeks. However, the numbers of F and S boutons remained stable for both motoneuron types. Age-related changes in apposition and active zone lengths of F and S boutons characterize the synaptic rearrangements which are occurring during the postnatal development of motoneurons.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005360 Fibula The bone of the lower leg lateral to and smaller than the tibia. In proportion to its length, it is the most slender of the long bones. Fibulas
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
March 1992, The Journal of comparative neurology,
M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
July 1990, Brain research. Developmental brain research,
M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
November 1999, Experimental brain research,
M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
December 1987, Brain research,
M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
October 1985, The Journal of comparative neurology,
M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
February 1979, Brain research,
M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
April 1981, Journal of comparative and physiological psychology,
M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
December 1983, The Journal of comparative neurology,
M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
November 2003, Respiratory physiology & neurobiology,
M Simon, and J Destombes, and G Horcholle-Bossavit, and D Thiesson
August 1981, Journal of ultrastructure research,
Copied contents to your clipboard!