Phosphodiesterase 4 in macrophages: relationship between cAMP accumulation, suppression of cAMP hydrolysis and inhibition of [3H]R-(-)-rolipram binding by selective inhibitors. 1996

J J Kelly, and P J Barnes, and M A Giembycz
Department of Thoracic Medicine, Imperial College of Science, Technology and Medicine, London, U.K.

A perplexing phenomenon identified in several tissues is the lack of correlation between inhibition of phosphodiesterase 4 (PDE4) and certain functional responses such as smooth muscle relaxation, gastric acid secretion and cAMP accumulation. Interpretation of these data is complicated further by the finding that function correlates with the ability of PDE4 inhibitors to displace [3H]rolipram [4-(3-cyclopentenyloxy-4-methoxyphenyl)-2-pyrrolidone] from a high-affinity site in rat brain that is apparently distinct from the catalytic centre of the enzyme. We have investigated this discrepancy by using guinea pig macrophages as a source of PDE4 and have confirmed that the ability of a limited range of structurally dissimilar PDE inhibitors (Org 20241, nitraquazone and the enantiomers of rolipram and benafentrine) to increase cAMP content did not correlate with their potency as inhibitors of partly purified PDE4, whereas a significant linear and rank order correlation was found when cAMP accumulation was related to the displacement of [3H]R-(-)-rolipram from a specific site identified in macrophage lysates. An explanation for these data emerged from the finding that the IC50 values and rank order of potency of these compounds for inhibition of partly purified PDE4 and the native (membrane-bound) form of the same enzyme were distinct. Similarly, no correlation was found when membrane-bound PDE4 was compared with the same enzyme that had been solubilized with Triton X-100. These unexpected results were attributable to a selective decrease in the potency of those inhibitors [nitraquazone, R-(-)- and S-(+)-rolipram] that interacted preferentially with the rolipram binding site. Indeed, if membrane-bound PDE4 was used as the enzyme preparation, excellent linear and rank order correlations between inhibition of cAMP hydrolysis, displacement of [3H]R-(-)-rolipram and cAMP accumulation were found, which improved further in the presence of the vanadyl (Vo)/2. GSH complex. Moreover, using Vo/2.GSH-treated membranes, the IC50 values of nitraquazone and the enantiomers of rolipram for the inhibition of PDE4 approached their affinity for the rolipram binding site. Collectively, these data suggest that the rolipram binding site and the catalytic domain on CPPDE4 might represent part of the same entity. In addition, these results support the concept that PDE4 can exist in different conformational states [Barnett, Manning, Cieslinski, Burman, Christensen and Torphy (1995) J. Pharmcol. Exp. Ther. 273, 674-679] and provide evidence that the cAMP content in macrophages is regulated primarily by a conformer of PDE4 for which rolipram has nanomolar affinity.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010726 Phosphodiesterase Inhibitors Compounds which inhibit or antagonize the biosynthesis or actions of phosphodiesterases. Phosphodiesterase Antagonists,Phosphodiesterase Inhibitor,Phosphoric Diester Hydrolase Inhibitors,Antiphosphodiesterases,Inhibitor, Phosphodiesterase
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D011760 Pyrrolidinones A group of compounds that are derivatives of oxo-pyrrolidines. A member of this group is 2-oxo pyrrolidine, which is an intermediate in the manufacture of polyvinylpyrrolidone. (From Merck Index, 11th ed) Pyrrolidinone,Pyrrolidone,Pyrrolidones
D011799 Quinazolines A group of aromatic heterocyclic compounds that contain a bicyclic structure with two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. Quinazoline
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

J J Kelly, and P J Barnes, and M A Giembycz
October 1996, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft,
J J Kelly, and P J Barnes, and M A Giembycz
January 2011, Current radiopharmaceuticals,
J J Kelly, and P J Barnes, and M A Giembycz
January 1991, Journal of medicinal chemistry,
J J Kelly, and P J Barnes, and M A Giembycz
May 2003, The Journal of pharmacology and experimental therapeutics,
J J Kelly, and P J Barnes, and M A Giembycz
July 1995, European journal of pharmacology,
J J Kelly, and P J Barnes, and M A Giembycz
December 2002, European journal of nuclear medicine and molecular imaging,
J J Kelly, and P J Barnes, and M A Giembycz
February 1997, Molecular pharmacology,
Copied contents to your clipboard!