Non-random peroxidation of different classes of membrane phospholipids in live cells detected by metabolically integrated cis-parinaric acid. 1996

V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
Department of Environmental and Occupational Health, University of Pittsburgh, PA 15238, USA.

Quantitative assays of lipid peroxidation in intact, living cells are essential for evaluating oxidative damage from various sources and for testing the efficacy of antioxidant interventions. We report a novel method based on the use of cis-parinaric acid (PnA) as a reporter molecule for membrane lipid peroxidation in intact mammalian cells. Using four different cell lines (human leukemia HL-60, K562 and K/VP.5 cells, and Chinese hamster ovary (CHO) fibroblasts), we developed a technique to metabolically integrate PnA into all major classes of membrane phospholipids, i.e., phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and cardiolipin, that can be quantified by HPLC with fluorescence detection. Integrated PnA constituted less than 1% of lipid fatty acid residues, suggesting that membrane structure and characteristics were not significantly altered. Low concentrations (20-40 microM) of tert-butyl hydroperoxide (t-BuOOH) caused selective oxidation of PnA residues in phosphatidylserine and phosphatidylethanolamine of K562 cells and K/VP.5 cells while cell viability was unaffected. At higher t-BuOOH concentrations (exceeding 100 microM), however, a progressive, random oxidation of all major phospholipid classes occurred and was accompanied by significant cell death. In HL-60 cells, phosphatidylethanolamine, phosphatidylserine and cardiolipin were sensitive to low concentrations of t-BuOOH, while phosphatidylcholine and phosphatidylinositol were not affected. Phosphatidylinositol was the only phospholipid that responded to the low concentrations of t-BuOOH in CHO cells. At high t-BuOOH concentrations, again, all phospholipid classes underwent extensive oxidation. All phospholipids were nearly equally affected by peroxidation induced by a initiator of peroxyl radicals, 2,2'-azobis-(2,4-dimethylvaleronitrile) AMVN), in K562 cells. In gamma-irradiated (4-128 Gy) CHO cells, phosphatidylserine was the most affected phospholipid class (34% peroxidation) followed by phosphatidylinositol (24% peroxidation) while the other three phospholipid classes were apparently unaffected. Since loss of PnA fluorescence is a direct result of irreparable oxidative loss of its conjugated double bond system, the method described allows for selective and sensitive monitoring of oxidative stress in live cells without interference from cell repair mechanisms.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
January 1998, Methods in molecular biology (Clifton, N.J.),
V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
February 1997, Lipids,
V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
December 1983, Biochimica et biophysica acta,
V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
November 1991, Cancer research,
V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
August 1992, Archives of biochemistry and biophysics,
V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
December 1997, Biochimica et biophysica acta,
V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
January 1992, Cytometry,
V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
January 1996, Journal of microencapsulation,
V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
September 1995, Neurosurgery,
V B Ritov, and S Banni, and J C Yalowich, and B W Day, and H G Claycamp, and F P Corongiu, and V E Kagan
January 1999, Biochimica et biophysica acta,
Copied contents to your clipboard!