Serotonin 5-HT2 receptor, dopamine D2 receptor, and alpha 1 adrenoceptor antagonists. Conformationally flexible analogues of the atypical antipsychotic sertindole. 1996

K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
Research Department, H. Lundbeck A/S, Copenhagen, Denmark.

Conformationally flexible analogues of the atypical antipsychotic sertindole (1-[2-[4-[5-chloro -1-(4-fluorophenyl)-1H-indol-3-yl]-4-piperidinyl]ethyl]-2-imidazolidi non e) were synthesized. Replacement of the 4-piperidinyl ring in sertindole by a 2-(methylamino)ethoxy group or a 2-(methylamino)ethyl group (e.g. 1-[2-[2-[5-chloro-1-(4-fluorophenyl)-1H -indol-3-yloxy]ethyl-methylamino]ethyl]-2-imidazolidinone and 1-[3-[[2-[5-chloro-1-(4-fluorophenyl)-1H-indol-3-yl] -ethyl]methylamino]propyl]-2-imidazolidinone results in binding affinities for serotonin 5-HT2A and dopamine D2 receptors, as well as alpha 1 adrenoceptors, which are very similar to those of sertindole. (Methylamino)alkyl groups of other chain lengths, 3-(methylamino)propyloxy groups, and 2-(methylamino)ethylsulfanyl groups do not have such properties. The capability of the 2-(methylamino)ethoxy group and the 2-(methylamino)ethyl group to replace the 4-piperidinyl ring in sertindole is reflected in molecular modeling studies using recently published receptor-interaction models for 5-HT2 and D2 receptors. Structure-affinity investigations concerning the substituents in the indole nucleus and the 2-imidazolidinone ring system in the 2-(methylamino)ethoxy and the 2-(methylamino)ethyl analogues of sertindole have led to high affinity serotonin 5-HT2A receptor antagonists with selectivity versus dopamine D2 receptors and alpha 1 adrenoceptors (e.g. 1-[2-[[2-[6-chloro-1-(4-fluorophenyl) -1H-indol-3-yloxy]ethyl]methylamino]-ethyl]-2-imidazolidinone and 1-[3-[[2-[6-chloro-1-(4-fluorophenyl) -1H-indol-3-yl]ethyl]methylamino]propyl]-2-imidazolidinone). The latter derivative has also high selectivity for 5-HT2A receptors versus serotonin 5-HT2C receptors. Replacement of the basic amino group by nitrogen-containing six-membered rings has led to 5-chloro-1-(4-fluorophenyl)-3-[(4-methylpiperazinyl)-ethoxy]-1H-in dole, which has high affinity for dopamine D2, versus low affinity for serotonin 5-HT2A receptors and alpha 1 adrenoceptors.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
August 1994, Journal of medicinal chemistry,
K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
January 1992, Clinical neuropharmacology,
K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
January 1988, Journal of cardiovascular pharmacology,
K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
January 1996, Journal of psychiatry & neuroscience : JPN,
K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
March 1994, Pharmacology, biochemistry, and behavior,
K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
January 1992, Journal of neural transmission. General section,
K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
February 1992, Journal of medicinal chemistry,
K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
June 1986, European journal of pharmacology,
K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
June 2002, Psychopharmacology,
K Andersen, and T Liljefors, and J Hyttel, and J Perregaard
March 1983, Life sciences,
Copied contents to your clipboard!