| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D009046 |
Motor Neurons |
Neurons which activate MUSCLE CELLS. |
Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor |
|
| D009433 |
Neural Inhibition |
The function of opposing or restraining the excitation of neurons or their target excitable cells. |
Inhibition, Neural |
|
| D009759 |
Nystagmus, Pathologic |
Involuntary movements of the eye that are divided into two types, jerk and pendular. Jerk nystagmus has a slow phase in one direction followed by a corrective fast phase in the opposite direction, and is usually caused by central or peripheral vestibular dysfunction. Pendular nystagmus features oscillations that are of equal velocity in both directions and this condition is often associated with visual loss early in life. (Adams et al., Principles of Neurology, 6th ed, p272) |
Convergence Nystagmus,Horizontal Nystagmus,Jerk Nystagmus,Pendular Nystagmus,Periodic Alternating Nystagmus,Rotary Nystagmus,See-Saw Nystagmus,Vertical Nystagmus,Conjugate Nystagmus,Dissociated Nystagmus,Fatigable Positional Nystagmus,Multidirectional Nystagmus,Non-Fatigable Positional Nystagmus,Permanent Nystagmus,Rebound Nystagmus,Retraction Nystagmus,Rotational Nystagmus,Spontaneous Ocular Nystagmus,Symptomatic Nystagmus,Temporary Nystagmus,Unidirectional Nystagmus,Non Fatigable Positional Nystagmus,Nystagmus, Conjugate,Nystagmus, Convergence,Nystagmus, Dissociated,Nystagmus, Fatigable Positional,Nystagmus, Horizontal,Nystagmus, Jerk,Nystagmus, Multidirectional,Nystagmus, Non-Fatigable Positional,Nystagmus, Pendular,Nystagmus, Periodic Alternating,Nystagmus, Permanent,Nystagmus, Rebound,Nystagmus, Retraction,Nystagmus, Rotary,Nystagmus, Rotational,Nystagmus, See-Saw,Nystagmus, Spontaneous Ocular,Nystagmus, Symptomatic,Nystagmus, Temporary,Nystagmus, Unidirectional,Nystagmus, Vertical,Ocular Nystagmus, Spontaneous,Pathologic Nystagmus,Positional Nystagmus, Non-Fatigable,See Saw Nystagmus |
|
| D011149 |
Pons |
The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. |
Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons |
|
| D011930 |
Reaction Time |
The time from the onset of a stimulus until a response is observed. |
Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response |
|
| D002415 |
Cats |
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) |
Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat |
|
| D000010 |
Abducens Nerve |
The 6th cranial nerve which originates in the ABDUCENS NUCLEUS of the PONS and sends motor fibers to the lateral rectus muscles of the EYE. Damage to the nerve or its nucleus disrupts horizontal eye movement control. |
Cranial Nerve VI,Sixth Cranial Nerve,Abducent Nerve,Nerve VI,Nervus Abducens,Abducen, Nervus,Abducens, Nervus,Abducent Nerves,Cranial Nerve VIs,Cranial Nerve, Sixth,Nerve VI, Cranial,Nerve VIs,Nerve VIs, Cranial,Nerve, Abducens,Nerve, Abducent,Nerve, Sixth Cranial,Nerves, Sixth Cranial,Nervus Abducen,Sixth Cranial Nerves |
|
| D000200 |
Action Potentials |
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. |
Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|