Phosphorylation generates different forms of rotavirus NSP5. 1996

I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy.

NSP5 (non-structural protein 5) is one of two proteins encoded by genome segment 11 of group A rotaviruses. In virus-infected cells NSP5 accumulates in the virosomes and is found as two polypeptides with molecular masses of 26 and 28 kDa (26K and 28K proteins). NSP5 has been previously shown to be post-translationally modified by the addition of O-linked monosaccharide residues of N-acetylglucosamine and also by phosphorylation. We have now found that, as a consequence of phosphorylation, a complex modification process gives rise to previously unidentified forms of NSP5, with molecular masses of up to 34 kDa. Treatment with phosphatases of NSP5 obtained from virus-infected cells produced a single band of 26 kDa. NSP5 could be phosphorylated in vitro by incubation of immunoprecipitates with [gamma-32P]ATP, producing mainly phosphorylated products of 28 and 32-34 kDa (32-34K). In both in vivo and in vitro phosphorylated NSP5, phosphates were only found attached via serine and threonine residues. The in vitro translated NSP5 precursor polypeptide, molecular mass 25 kDa (25K), could also be phosphorylated and transformed into a 28K protein by incubation with extracts obtained from virus-infected cells, but not from non-infected cells. In addition, NSP5 labelled in vivo with [1,6-3H]glucosamine showed mainly the presence of the 26K and 28K proteins (converted to 26K by protein phosphatase treatment) suggesting that the type of protein produced is regulated according to the level of phosphorylation and/or O-glycosylation. The results also suggest that NSP5 is autophosphorylated.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D012401 Rotavirus A genus of REOVIRIDAE, causing acute gastroenteritis in BIRDS and MAMMALS, including humans. Transmission is horizontal and by environmental contamination. Seven species (Rotaviruses A thru G) are recognized. Neonatal Calf Diarrhea Virus,Rotaviruses
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
August 1998, Journal of virology,
I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
August 2006, Journal of virology,
I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
October 2002, Archives of virology,
I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
April 2002, Journal of virology,
I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
July 2010, The Journal of general virology,
I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
April 2010, Virus research,
I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
January 1997, Journal of virology,
I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
October 2011, Journal of molecular biology,
I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
January 2014, Journal of virology,
I Afrikanova, and M C Miozzo, and S Giambiagi, and O Burrone
February 1998, Acta virologica,
Copied contents to your clipboard!