The human CSB (ERCC6) gene corrects the transcription-coupled repair defect in the CHO cell mutant UV61. 1996

D K Orren, and G L Dianov, and V A Bohr
Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.

The human CSB gene, mutated in Cockayne's syndrome group B (partially defective in both repair and transcription) was previously cloned by virtue of its ability to correct the moderate UV sensitivity of the CHO mutant UV61. To determine whether the defect in UV61 is the hamster equivalent of Cockayne's syndrome, the RNA polymerase II transcription and DNA repair characteristics of a repair-proficient CHO cell line (AA8), UV61 and a CSB transfectant of UV61 were compared. In each cell line, formation and removal of UV-induced cyclobutane pyrimidine dimers (CPDs) were measured in the individual strands of the actively transcribed DHFR gene and in a transcriptionally inactive region downstream of DHFR. AA8 cells efficiently remove CPDs from the transcribed strand, but not from either the non-transcribed strand or the inactive region. There was no detectable repair of CPDs in any region of the genome in UV61. Transfection of the human CSB gene into UV61 restores the normal repair pattern (CPD removal in only the transcribed strand), demonstrating that the DNA repair defect in UV61 is homologous to that in Cockayne's syndrome (complementation group B) cells. However, we observe no significant deficiency in RNA polymerase II-mediated transcription in UV61, suggesting that the CSB protein has independent roles in DNA repair and RNA transcription pathways.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003057 Cockayne Syndrome A syndrome characterized by multiple system abnormalities including DWARFISM; PHOTOSENSITIVITY DISORDERS; PREMATURE AGING; and HEARING LOSS. It is caused by mutations of a number of autosomal recessive genes encoding proteins that involve transcriptional-coupled DNA REPAIR processes. Cockayne syndrome is classified by the severity and age of onset. Type I (classical; CSA) is early childhood onset in the second year of life; type II (congenital; CSB) is early onset at birth with severe symptoms; type III (xeroderma pigmentosum; XP) is late childhood onset with mild symptoms. Progeria-Like Syndrome,Cockayne Syndrome Type 3,Cockayne Syndrome Type C,Cockayne Syndrome, Group A,Cockayne Syndrome, Group B,Cockayne Syndrome, Group C,Cockayne Syndrome, Type A,Cockayne Syndrome, Type B,Cockayne Syndrome, Type C,Cockayne Syndrome, Type I,Cockayne Syndrome, Type II,Cockayne Syndrome, Type III,Dwarfism-Retinal Atrophy-Deafness Syndrome,Group A Cockayne Syndrome,Group B Cockayne Syndrome,Group C Cockayne Syndrome,Progeroid Nanism,Type A Cockayne Syndrome,Type B Cockayne Syndrome,Type C Cockayne Syndrome,Type I Cockayne Syndrome,Type II Cockayne Syndrome,Type III Cockayne Syndrome,Progeria Like Syndrome,Progeria-Like Syndromes,Syndrome, Cockayne,Syndrome, Progeria-Like
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests

Related Publications

D K Orren, and G L Dianov, and V A Bohr
March 2022, Proceedings of the National Academy of Sciences of the United States of America,
D K Orren, and G L Dianov, and V A Bohr
January 2009, Cancer letters,
D K Orren, and G L Dianov, and V A Bohr
December 1997, Molecular and cellular biology,
D K Orren, and G L Dianov, and V A Bohr
March 1989, Mutagenesis,
Copied contents to your clipboard!