Toxicity and carcinogenicity of delta 9-tetrahydrocannabinol in Fischer rats and B6C3F1 mice. 1996

P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.

delta 9-Tetrahydrocannabinol (delta 9-THC) was studied for potential carcinogenicity in rodents because it is the principal psychoactive ingredient in marihuana and it has potential medicinal uses. delta 9-THC in corn oil was administered by gavage to groups of male and female Fischer rats and B6C3F1 mice at 0, 5, 15, 50, 150, or 500 mg/kg, 5 days a week for 13 weeks and for 13-week plus a 9-week recovery period, and to groups of rats at 0, 12.5, or 50 mg/kg and mice at 0, 125, 250, or 500 mg/kg, 5 times a week for 2 years. In all studies, mean body weights of dosed male and female rats and mice were lower than controls but feed consumptions were similar. Convulsions and hyperactivity were observed in dosed rats and mice; the onset and frequency were dose related. Serum FSH and LH levels in all dosed male rats and corticosterone levels in 25 mg/kg female rats were significantly higher than controls at 15 months in the 2-year studies. delta 9-THC administration for 13 weeks induced testicular atrophy and uterine and ovarian hypoplasia; the lesions persisted in a 9-week recovery period. In the 2-year studies, survival of dosed rats was higher than controls; that of mice was similar to controls. Incidences of testicular interstitial cell, pancreas and pituitary gland adenomas in male rats, mammary gland fibroadenoma and uterus stromal polyp in female rats, and hepatocellular adenoma/carcinoma in male and female mice were reduced in a dose-related manner. Decreased tumor incidences may be at least in part due to reduced body weights of dosed animals. Incidences of thyroid gland follicular cell hyperplasia were increased in all dosed groups of male and female mice, and follicular cell adenomas were significantly increased in the 125 mg/kg group of males, but there was no evidence of a dose-related trend in proliferative lesions of the thyroid. There was no evidence that delta 9-THC was carcinogenic in rats or mice.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013759 Dronabinol A psychoactive compound extracted from the resin of Cannabis sativa (marihuana, hashish). The isomer delta-9-tetrahydrocannabinol (THC) is considered the most active form, producing characteristic mood and perceptual changes associated with this compound. THC,Tetrahydrocannabinol,delta(9)-THC,9-ene-Tetrahydrocannabinol,Marinol,Tetrahydrocannabinol, (6a-trans)-Isomer,Tetrahydrocannabinol, (6aR-cis)-Isomer,Tetrahydrocannabinol, (6aS-cis)-Isomer,Tetrahydrocannabinol, Trans-(+-)-Isomer,Tetrahydrocannabinol, Trans-Isomer,delta(1)-THC,delta(1)-Tetrahydrocannabinol,delta(9)-Tetrahydrocannabinol,9 ene Tetrahydrocannabinol,Tetrahydrocannabinol, Trans Isomer
D015197 Carcinogenicity Tests Tests to experimentally measure the tumor-producing/cancer cell-producing potency of an agent by administering the agent (e.g., benzanthracenes) and observing the quantity of tumors or the cell transformation developed over a given period of time. The carcinogenicity value is usually measured as milligrams of agent administered per tumor developed. Though this test differs from the DNA-repair and bacterial microsome MUTAGENICITY TESTS, researchers often attempt to correlate the finding of carcinogenicity values and mutagenicity values. Tumorigenicity Tests,Carcinogen Tests,Carcinogenesis Tests,Carcinogenic Activity Tests,Carcinogenic Potency Tests,Carcinogen Test,Carcinogenesis Test,Carcinogenic Activity Test,Carcinogenic Potency Test,Carcinogenicity Test,Potency Test, Carcinogenic,Potency Tests, Carcinogenic,Test, Carcinogen,Test, Carcinogenesis,Test, Carcinogenic Activity,Test, Carcinogenic Potency,Test, Carcinogenicity,Test, Tumorigenicity,Tests, Carcinogen,Tests, Carcinogenesis,Tests, Carcinogenic Activity,Tests, Carcinogenic Potency,Tests, Carcinogenicity,Tests, Tumorigenicity,Tumorigenicity Test
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
December 1985, Fundamental and applied toxicology : official journal of the Society of Toxicology,
P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
January 1971, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
November 2001, Odontology,
P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
January 2011, The American journal of Chinese medicine,
P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
May 1990, Fundamental and applied toxicology : official journal of the Society of Toxicology,
P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
January 2002, Toxicologic pathology,
P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
July 1989, Environmental health perspectives,
P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
October 1985, Toxicology,
P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
April 1974, Toxicology and applied pharmacology,
P C Chan, and R C Sills, and A G Braun, and J K Haseman, and J R Bucher
September 2011, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Copied contents to your clipboard!