Choline's phosphorylation in rat striatal slices is regulated by the activity of cholinergic neurons. 1996

S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA.

The mechanism by which populations of brain cells regulate the flux of choline (Ch) into membrane or neurotransmitter biosynthesis was investigated using electrically stimulated superfused slices of rat corpus striatum. [Me-14C]Ch placed in the superfusion medium for 30 min during a 1-h stimulation period was incorporated into tissue [14C] phosphorylcholine (PCh) and [14C]phosphatidylcholine (PtdCh). Stimulation also caused a profound inhibition of PCh synthesis and a 10-fold increase in [14C]ACh release into the medium; it failed to affect tissue [14C]ACh levels. This effect was not explained by changes in ATP levels nor in the kinetic properties of Ch kinase (E.C. 2.7.1.32) or Ch acetyltransferase (ChAT) (E.C.2.3.1.7). To investigate the mechanism of these effects, Ch uptake studies were performed with and without hemicholinium-3 (HC3), a selective inhibitor of high affinity Ch uptake. A two-compartment model accurately fit the observed data and yielded a K(m) for Ch uptake of 5 microM into cholinergic structures and 72 microM into all other cells. Using this model it was estimated that cholinergic neurons account for 60% of observed uptake of Ch at physiologic Ch concentrations, even though they represent fewer than 1% of the total cells in the slice. The model also predicts that an increase in Ch uptake within cholinergic neurons, reported to be associated with depolarization [4,27,32], would significantly inhibit Ch uptake into all other cells, and would account for the observed decrease in PCh synthesis.

UI MeSH Term Description Entries
D008297 Male Males
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
October 1986, Brain research,
S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
March 2009, Brain research bulletin,
S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
January 1992, Neuroscience,
S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
April 2011, Human molecular genetics,
S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
April 2005, Toxicology letters,
S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
November 1979, Naunyn-Schmiedeberg's archives of pharmacology,
S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
January 1992, Journal of neurochemistry,
S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
May 1989, Journal of neurochemistry,
S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
May 2007, Brain research bulletin,
S A Farber, and V Savci, and A Wei, and B E Slack, and R J Wurtman
July 1988, Neuropharmacology,
Copied contents to your clipboard!