Steroid inhibition of [3H]SR 95531 binding to the GABAA recognition site. 1996

J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
CoCensys Inc., Irvine, CA 92718, USA.

The interaction of three types of steroids with the GABAA recognition site labeled by the antagonist ligand [3H]SR 95531 was evaluated in rat brain cortical membranes. The first type is the GABA site antagonist RU 5135, which potently (IC50 7 nM) but also incompletely (Imax 82%) displaced [3H]SR 95531. RU 5135 probably binds only to high affinity [3H]SR 9553] sites recognized by GABA and unlabelled SR 95531. The second type are the neuroactive steroids which act as positive allosteric modulators, including 3 alpha-hydroxy-5 beta-pregnan-20-one (3 alpha, 5 beta-P) and 5 beta-tetrahydrodeoxycorticosterone (5 beta-THDOC), which inhibited [3H]SR 95531 binding with limited efficacy (IC50 460 nM and 1.4 microM, Imax 41 and 31%, respectively). In contrast, 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha, 5 alpha-P) was inactive. The third type are the neurosteroids acting as negative allosteric modulators, such as pregnenolone sulfate, which inhibited [3H]SR 95531 binding with limited efficacy (IC50 10 microM, Imax 23%). In the presence of a saturating concentration of pregnenolone sulfate, 3 alpha, 5 beta-P further inhibited [3H]SR 95531 binding suggesting that these two steroids act through different sites or, possibly, at different populations of GABAA receptors. The allosteric modulation was selective for steroids since benzodiazepines and barbiturates were inactive up to 100 microM. Taken together, these data suggest that 3 alpha, 5 beta-P and 5 beta-THDOC modulate [3H]SR 95531 binding by interacting with a unique site on the GABAA receptor complex distinct from the sites for 3 alpha, 5 alpha-P, pregnenolone sulfate, GABA, benzodiazepines, and barbiturates.

UI MeSH Term Description Entries
D008297 Male Males
D011280 Pregnanolone A pregnane found in the urine of pregnant women and sows. It has anesthetic, hypnotic, and sedative properties. Eltanolone,3 alpha, 5 beta-Tetrahydroprogesterone,3 alpha-Hydroxy-5 alpha-pregnan-20-one,3 alpha-Hydroxy-5 beta-pregnan-20-one,3-Hydroxypregnan-20-one,3beta-Hydroxy-5alpha-pregnan-20-one,Allopregnan-3 beta-ol-20-one,Allopregnanolone,Epipregnanolone,Pregnan-3alpha-ol-20-one,Pregnanolone, (3alpha)-isomer,Pregnanolone, (3alpha, 5beta, 17-alpha)-isomer,Pregnanolone, (3alpha,5alpha)-isomer,Pregnanolone, (3alpha,5beta)-isomer,Pregnanolone, (3beta)-isomer,Pregnanolone, (3beta, 5alpha)-isomer,Pregnanolone, (3beta, 5alpha, 17alpha)-isomer,Pregnanolone, (3beta, 5alpha, 8alpha, 17beta)-isomer,Pregnanolone, (3beta, 5beta)-isomer,Pregnanolone, (3beta, 5beta, 17alpha)-isomer,Pregnanolone, (3beta, 5beta,14beta)-isomer,Pregnanolone, (5alpha)-isomer,Sepranolone,3 Hydroxypregnan 20 one,3 alpha Hydroxy 5 alpha pregnan 20 one,3 alpha Hydroxy 5 beta pregnan 20 one,3 alpha, 5 beta Tetrahydroprogesterone,3beta Hydroxy 5alpha pregnan 20 one,Allopregnan 3 beta ol 20 one,Pregnan 3alpha ol 20 one,alpha-Hydroxy-5 alpha-pregnan-20-one, 3,alpha-Hydroxy-5 beta-pregnan-20-one, 3,alpha-pregnan-20-one, 3 alpha-Hydroxy-5,beta-ol-20-one, Allopregnan-3,beta-pregnan-20-one, 3 alpha-Hydroxy-5
D011284 Pregnenolone A 21-carbon steroid, derived from CHOLESTEROL and found in steroid hormone-producing tissues. Pregnenolone is the precursor to GONADAL STEROID HORMONES and the adrenal CORTICOSTEROIDS. 5-Pregnen-3-beta-ol-20-one,5 Pregnen 3 beta ol 20 one
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011724 Pyridazines Six-membered rings with two adjacent nitrogen atoms also called 1,2-diazine.
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003900 Desoxycorticosterone A steroid metabolite that is the 11-deoxy derivative of CORTICOSTERONE and the 21-hydroxy derivative of PROGESTERONE 21-Hydroxyprogesterone,Cortexone,Deoxycorticosterone,Desoxycortone,11-Decorticosterone,21-Hydroxy-4-pregnene-3,20-dione,11 Decorticosterone,21 Hydroxy 4 pregnene 3,20 dione,21 Hydroxyprogesterone
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric

Related Publications

J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
June 1987, Journal of neurochemistry,
J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
March 1988, European journal of pharmacology,
J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
April 1992, Neurochemical research,
J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
September 1989, Biochemical pharmacology,
J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
January 1988, Synapse (New York, N.Y.),
J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
January 1992, Advances in biochemical psychopharmacology,
J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
June 1989, Journal of protein chemistry,
J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
February 1994, Journal of neurochemistry,
J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
January 1991, Journal of receptor research,
J E Hawkinson, and M Acosta-Burruel, and C L Kimbrough, and D B Goodnough, and P L Wood
January 1995, European journal of pharmacology,
Copied contents to your clipboard!