Molecular modeling of serotonin, ketanserin, ritanserin and their 5-HT2C receptor interactions. 1996

K Kristiansen, and S G Dahl
Department of Pharmacology, Institute of Medical Biology, University of Tromsö, Norway.

Molecular modeling techniques were used to build a three-dimensional model of the rat 5-HT2C receptor, which was used to examine receptor interactions for protonated forms of serotonin, ketanserin and ritanserin. Molecular dynamics simulations which were started with the fluoro benzene moiety of ketanserin and ritanserin oriented towards the cytoplasmic side of the receptor model, produced the strongest antagonist-receptor interactions. The fluoro bezene ring(s) of the antagonists interacted strongly with aromatic residues in the receptor model, which predicts slightly different orientations and ligand-receptor interactions of ketanserin and ritanserin at a putative binding site. The model suggests that Asn333 (transmembrane helix 6) is involved in a hydrogen-bonding interaction with ketanserin, but not with ritanserin. The model also also suggests that the position corresponding to Cys362 (transmembrane helix 7) may be an important determinant for specifying 5-HT2A receptor selectivity in ketanserin binding.

UI MeSH Term Description Entries
D007650 Ketanserin A selective serotonin receptor antagonist with weak adrenergic receptor blocking properties. The drug is effective in lowering blood pressure in essential hypertension. It also inhibits platelet aggregation. It is well tolerated and is particularly effective in older patients. 3-(2-(4-(4-Fluorobenzoyl)piperidinol)ethyl)-2,4(1H,3H)-quinazolinedione,R-41,468,R-41468,R 41,468,R 41468,R41,468,R41468
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D016713 Ritanserin A selective and potent serotonin-2 antagonist that is effective in the treatment of a variety of syndromes related to anxiety and depression. The drug also improves the subjective quality of sleep and decreases portal pressure. 6-(2-(4-(Bis(4-fluorophenyl)methylene)-1-piperidinyl)ethyl)-7-methyl-5H-thiazolo(3,2-a)pyrimidin-5-one,R-55667,Ritanserin Hydrochloride,Ritanserin Tartrate,R 55667,R55667

Related Publications

K Kristiansen, and S G Dahl
July 1992, Brain research. Molecular brain research,
K Kristiansen, and S G Dahl
January 2000, Acta poloniae pharmaceutica,
K Kristiansen, and S G Dahl
September 1997, Journal of neurochemistry,
K Kristiansen, and S G Dahl
January 2018, PloS one,
K Kristiansen, and S G Dahl
September 1995, European journal of pharmacology,
K Kristiansen, and S G Dahl
April 2019, European journal of pharmacology,
K Kristiansen, and S G Dahl
December 1998, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!