Signal transduction pathway on beta-glucans-triggered hydrogen peroxide production by murine peritoneal macrophages in vitro. 1996

M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
School of Pharmacy, Tokyo University of Pharmacy and Life Science, Japan.

It has been reported that the biological activities of several beta-glucans vary due to differences in their physicochemical properties. In this study we investigated the ability of beta-glucans to trigger H2O2 production and activate signaling pathway on peritoneal macrophages. The most effective beta-glucan tested on H2O2 production was zymocel which was a particulate preparation from the yeast cell wall. In contrast, gel-forming beta-glucans which are known as immunoenhancers did not trigger the H2O2 production by macrophages at all. To identify the related signaling pathway for the particulate beta-glucans-triggered H2O2 production, several inhibitors were applied. Hydrogen peroxide production triggered with phorbol myristate acetate was inhibited by pretreatment of macrophages with H-7, a protein kinase C inhibitor. However, beta-glucans-triggered H2O2 production was not affected by H-7. The results suggested that genistein-sensitive tyrosine kinase and bromophenacyl bromide-sensitive phospholipase A2 participated in the particulate beta-glucans-triggered H2O2 production, although the phagocytosis of particulate beta-glucans was not inhibited by either reagents. In conclusion, gel-forming (1-->3)-beta-D-glucans-induced activation was not sufficient to trigger H2O2 on macrophages, and pathways for particulate beta-glucans-triggered H2O2 production were regulated differently from those for phagocytosis of beta-glucans.

UI MeSH Term Description Entries
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D005936 Glucans Polysaccharides composed of repeating glucose units. They can consist of branched or unbranched chains in any linkages. Glucan,Polyglucose,Polyglucoses,Glucan (BO),Glucose Polymer,Polycose,Polymer, Glucose
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
May 1993, Biological & pharmaceutical bulletin,
M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
September 1997, Biological & pharmaceutical bulletin,
M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
November 1996, Immunology letters,
M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
August 1996, Immunology letters,
M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
May 2002, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
November 1986, Infection and immunity,
M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
November 1994, Cellular signalling,
M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
April 2000, The Journal of pharmacology and experimental therapeutics,
M Okazaki, and N Chiba, and Y Adachi, and N Ohno, and T Yadomae
August 2006, Infection and immunity,
Copied contents to your clipboard!