Trophic factors and central nervous system metastasis. 1995

G L Nicolson, and D G Menter
Department of Tumor Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.

To metastasize to the central nervous system (CNS) malignant cells must attach to brain microvessel endothelial cells, respond to brain endothelial cell-derived motility factors, respond to CNS-derived invasion factors and invade the blood-brain barrier (BBB), and finally, respond to CNS survival and growth factors. Trophic factors such as the neurotrophins play an important role in tumor cell invasion into the CNS and in the survival of small numbers of malignant cells under stress conditions. Trophic factors promote BBB invasion by enhancing the production of basement membrane-degrading enzymes in neurotrophin-responsive cells. The expression of certain neurotrophin receptors on brain-metastasic neuroendocrine cells occurs in relation to their invasive and survival properties. For example, CNS-metastatic melanoma cells respond to particular neurotrophins (nerve growth factor, neurotrophin-2) that can be secreted by normal cells within the CNS. In addition, a paracrine form of transferrin is important in CNS metastasis, and brain-metastatic cells respond to low levels of transferrin and express high levels of transferrin receptors. CNS-metastatic tumor cells can also produce autocrine factors and inhibitors that influence their growth, invasion and survival in the brain. Synthesis of paracrine factors and cytokines may influence the production of trophic factors by normal brain cells adjacent to tumor cells. Moreover, we found increased amounts of neurotrophins in brain tissue at the invasion front of human melanoma tumors in CNS biopsies. Thus the ability to form metastatic colonies in the CNS is dependent on tumor cell responses to trophic factors as well as autocrine and paracrine growth factors and probably other underdescribed factors.

UI MeSH Term Description Entries
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015995 Prevalence The total number of cases of a given disease in a specified population at a designated time. It is differentiated from INCIDENCE, which refers to the number of new cases in the population at a given time. Period Prevalence,Point Prevalence,Period Prevalences,Point Prevalences,Prevalence, Period,Prevalence, Point,Prevalences
D016543 Central Nervous System Neoplasms Benign and malignant neoplastic processes that arise from or secondarily involve the brain, spinal cord, or meninges. CNS Neoplasm,CNS Neoplasms,Central Nervous System Neoplasm,Central Nervous System Tumor,Neoplasms, Central Nervous System,Primary Central Nervous System Neoplasm,Central Nervous System Neoplasms, Primary,Central Nervous System Tumors,Primary Central Nervous System Neoplasms,Tumors, Central Nervous System,Neoplasm, CNS,Neoplasms, CNS
D017475 Receptors, Nerve Growth Factor Cell surface receptors that bind NERVE GROWTH FACTOR; (NGF) and a NGF-related family of neurotrophic factors that includes neurotrophins, BRAIN-DERIVED NEUROTROPHIC FACTOR and CILIARY NEUROTROPHIC FACTOR. NGF Receptors,Nerve Growth Factor Receptors,Neurotrophic Factor Receptor,Neurotrophin Receptor,Receptors, NGF,Receptors, Neurotrophin,Neurotrophin Receptors,Receptors, Neurotrophic Factor,Neurotrophic Factor Receptors,Receptor, Neurotrophic Factor,Receptor, Neurotrophin
D018450 Disease Progression The worsening and general progression of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis. Clinical Course,Clinical Progression,Disease Exacerbation,Exacerbation, Disease,Progression, Clinical,Progression, Disease

Related Publications

G L Nicolson, and D G Menter
January 1989, Sheng li ke xue jin zhan [Progress in physiology],
G L Nicolson, and D G Menter
July 1998, Archives of physiology and biochemistry,
G L Nicolson, and D G Menter
March 1974, Annals of the New York Academy of Sciences,
G L Nicolson, and D G Menter
December 2020, Continuum (Minneapolis, Minn.),
G L Nicolson, and D G Menter
January 2023, Journal of cancer research and therapeutics,
G L Nicolson, and D G Menter
April 2009, Trends in neurosciences,
G L Nicolson, and D G Menter
January 2000, The Journal of nutritional biochemistry,
G L Nicolson, and D G Menter
January 2015, The oncologist,
G L Nicolson, and D G Menter
October 2020, Neurosurgery clinics of North America,
Copied contents to your clipboard!